4.5 Article

On Energy Absorption Capacity, Flexural and Dynamic Properties of Flax/Epoxy Composite Tubes

Journal

FIBERS AND POLYMERS
Volume 15, Issue 6, Pages 1270-1277

Publisher

KOREAN FIBER SOC
DOI: 10.1007/s12221-014-1270-0

Keywords

Energy absorber; Flax FRP tube; Vibration; Thickness effect; Damping characteristics

Funding

  1. Engineering Faculty Research Development Fund (FRDF) of University of Auckland [3702507]
  2. University of Auckland

Ask authors/readers for more resources

In this study, energy absorption capacity, flexural and dynamic properties of flax fibre reinforced epoxy polymer composite (FFRP) tubes are investigated. The energy absorption capacity of the tubes is investigated under uniaxial compression. Flexural behaviour of the tubes is studied under four-point bending and the dynamic properties (i.e., natural frequency and damping characteristics) are evaluated by impact hammer vibration testing of the tube specimens. The damping characteristics of the tubes are determined by using both a logarithmic decrement curve and the half-peak bandwidth method. The influence of tube laminate thickness and specimen size on the mechanical properties of FFRP tubes is determined. Compressive testing indicates that the FFRP tube provides a specific absorbed energy of 22 Jig, which is close to the conventional metal energy absorption materials, i.e. stainless steel and aluminium tubes. Flexural study shows that the FFRP tube exhibits a brittle failure as similar to that of the FFRP composites in a flat-coupon tension. The load carrying capacity and deflection of the tube increase with an increase in the tube thickness. Impact loading test concludes that an increase in tube thickness leads to a reduction in natural frequency and damping ratio of the tubes. The FFRP tubes have size-dependent dynamic properties, i.e. an increase in tube size increased the natural frequency but reduced the damping ratio of the specimens remarkably. However, all FFRP tubes have high damping ratios, thus reducing the effect of dynamic loading on the structural response. Therefore, this study suggests that FFRP tubes could be used in several structural applications, i.e. in automotive as energy absorbers and in civil infrastructure as poles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available