4.5 Article

Development of Polyurethane Based Conducting Nanocomposite Fibers via Twin Screw Extrusion

Journal

FIBERS AND POLYMERS
Volume 12, Issue 6, Pages 734-740

Publisher

KOREAN FIBER SOC
DOI: 10.1007/s12221-011-0734-8

Keywords

Electrical conductivity; Nanocomposite fiber; Thermoplastic polyurethane (TPU); Twin Screw Extruder; Shear mixing

Ask authors/readers for more resources

In the present study, conducting nanofillers are incorporated in thermoplastic polyurethane (TPU) to produce nanocomposite fibers through melt compounding route using micro twin screw extruder attached to a fiber drawing device. Nanocomposite fibers using bulk graphite, nanographite and carbon nanofiber were produced using varying amounts of these nanofillers. Metal coated nanographite, new hybrid nanoparticle produced in house, were also used to impart conductivity to the TPU fiber. The process parameters such as processing temperature, mixing time and rpm of the screw have been optimized considering minimum change in TPU bulk properties. It has been found that the nanofillers can be melt mixed safely up to 4 min with the TPU at 180 degrees C and 100 screw rpm. These mixing conditions give reasonable amount of dispersion. The studies on such fibers in differential scanning calorimetry (DSC) and thermomechanical analyzer (TMA) reveals that the metal coated nanographite particles make the nanocomposite fibers more thermally stable. Both the D. C. conductivity and A. C. impedance of the nanocomposite fibers have reduced significantly even at very low loading of nanofillers, although the conductivity of the produced fibers are in antistatic range (D.C. conductivity similar to 10(-4) S/m).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available