4.6 Article

Characterization of the NAD(P)H oxidase and metronidazole reductase activities of the RdxA nitroreductase of Helicobacter pylori

Journal

FEBS JOURNAL
Volume 276, Issue 12, Pages 3354-3364

Publisher

WILEY
DOI: 10.1111/j.1742-4658.2009.07060.x

Keywords

flavoprotein; Helicobacter; metronidazole; NAD(P)H oxidase; nitroreductase

Funding

  1. NIH [5U01AI075520, 5R01DK073823]

Ask authors/readers for more resources

Metronidazole (MTZ) is widely used in combination therapies against the human gastric pathogen Helicobacter pylori. Resistance to this drug is common among clinical isolates and results from loss-of-function mutations in rdxA, which encodes an oxygen-insensitive nitroreductase. The RdxA-associated MTZ-reductase activity of H. pylori is lost upon cell disruption. Here we provide a mechanistic explanation for this phenomenon. Under aerobic conditions, His6-tagged RdxA protein (purified from Escherichia coli), catalyzed NAD(P)H-dependent reductions of nitroaromatic and quinone substrates including nitrofurazone, nitrofurantoin, furazolidone, CB1954 and 1,4-benzoquinone, but not MTZ. Unlike other nitroreductases, His6-RdxA exhibited potent NAD(P)H-oxidase activity (k(cat) = 2.8 s(-1)) which suggested two possible explanations for the role of oxygen in MTZ reduction: (a) NAD(P)H-oxidase activity promotes cellular hypoxia (nonspecific reduction of MTZ), and (b) molecular oxygen out-competes MTZ for reducing equivalents. The first hypothesis was eliminated upon finding that rdxA expression, although increasing MTZ toxicity in both E. coli and H. pylori constructs, did not increase paraquat toxicity, even though both are of similar redox potential. The second hypothesis was confirmed by demonstrating NAD(P)H-dependent MTZ-reductase activity (apparent K-m = 122 +/- 58 mu m, k(cat) = 0.24 s(-1)) under strictly anaerobic conditions. The MTZ-reductase activity of RdxA was 60 times greater than for NfsB (E. coli NTR), but 10 times lower than the NADPH-oxidase activity. Whether molecular oxygen directly competes with MTZ or alters the redox state of the FMN cofactors is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available