4.6 Article

Genomic structure and expression analysis of the RNase κ family ortholog gene in the insect Ceratitis capitata

Journal

FEBS JOURNAL
Volume 275, Issue 24, Pages 6217-6227

Publisher

WILEY
DOI: 10.1111/j.1742-4658.2008.06746.x

Keywords

alternative polyadenylation; AUUUA motifs; Cc RNase; RNase kappa; specific ribonuclease

Funding

  1. Greek Secretariat of Research and Technology
  2. Research Committee of the National Kapodistrian University of Athens

Ask authors/readers for more resources

Cc RNase is the founding member of the recently identified RNase kappa family, which is represented by a single ortholog in a wide range of animal taxonomic groups. Although the precise biological role of this protein is still unknown, it has been shown that the recombinant proteins isolated so far from the insect Ceratitis capitata and from human exhibit ribonucleolytic activity. In this work, we report the genomic organization and molecular evolution of the RNase kappa gene from various animal species, as well as expression analysis of the ortholog gene in C. capitata. The high degree of amino acid sequence similarity, in combination with the fact that exon sizes and intronic positions are extremely conserved among RNase kappa orthologs in 15 diverse genomes from sea anemone to human, imply a very significant biological function for this enzyme. In C. capitata, two forms of RNase kappa mRNA (0.9 and 1.5 kb) with various lengths of 3' UTR were identified as alternative products of a single gene, resulting from the use of different polyadenylation signals. Both transcripts are expressed in all insect tissues and developmental stages. Sequence analysis of the extended region of the longer transcript revealed the existence of three mRNA instability motifs (AUUUA) and five poly(U) tracts, whose functional importance in RNase kappa mRNA decay remains to be explored.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available