4.2 Article

Specificities and pH profiles of adenine and hypoxanthine-guanine-xanthine phosphoribosyltransferases (nucleotide synthases) of the thermoacidophile archaeon Sulfolobus solfataricus

Journal

EXTREMOPHILES
Volume 18, Issue 1, Pages 179-187

Publisher

SPRINGER JAPAN KK
DOI: 10.1007/s00792-013-0595-8

Keywords

Nucleotide synthesis in sulfolobales; Phosphoribosyltransferase; Crenarchaeota; Archaea; Substrate specificity of enzymes

Funding

  1. Danish Council for Independent Research | Natural Sciences (FNU)

Ask authors/readers for more resources

Two open reading frames in the genome of Sulfolobus solfataricus (SSO2341 and SSO2424) were cloned and expressed in E. coli. The protein products were purified and their enzymatic activity characterized. Although SSO2341 was annotated as a gene (gpT-1) encoding a 6-oxopurine phosphoribosyltransferase (PRTase), the protein product turned out to be a PRTase highly specific for adenine and we suggest that the reading frame should be renamed apT. The other reading frame SSO2424 (gpT-2) proved to be a true 6-oxopurine PRTase active with hypoxanthine, xanthine and guanine as substrates, and we suggest that the gene should be renamed gpT. Both enzymes exhibited unusual profiles of activity versus pH. The adenine PRTase showed the highest activity at pH 7.5-8.5, but had a distinct peak of activity also at pH 4.5. The 6-oxo PRTase showed maximal activity with hypoxanthine and guanine around pH 4.5, while maximal activity with xanthine was observed at pH 7.5. We discuss likely reasons why SSO2341 in S. solfataricus and similar open reading frames in other Crenarchaeota could not be identified as genes encoding APRTase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available