4.7 Article

Control strategies for high-power electric vehicles powered by hydrogen fuel cell, battery and supercapacitor

Journal

EXPERT SYSTEMS WITH APPLICATIONS
Volume 40, Issue 12, Pages 4791-4804

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2013.02.028

Keywords

Fuel cell; Energy storage system; Energy management system; Electric vehicle

Funding

  1. Hynergreen Technologies S.A.
  2. CENIT from the Center for the Development of Industrial Technology (an agency of the Spanish Ministry of Science and Technology)

Ask authors/readers for more resources

Problems relating to oil supply, pollution, and green house effects justify the need for developing of new technologies for transportation as a replacement for the actual technology based on internal combustion engines (ICE). Fuel cells (FCs) are seen as the best future replacement for ICE in transportation applications because they operate more efficiently and with lower emissions. This paper presents a comparative study performed in order to select the most suitable control strategy for high-power electric vehicles powered by FC, battery and supercapacitor (SC), in which each energy source uses a DC/DC converter to control the source power and adapt the output voltage to the common DC bus voltage, from where the vehicle loads are supplied. Five different controls are described for this kind of hybrid vehicles: a basic control based on three operation modes of the hybrid vehicle depending on the state of charge (SOC) of the battery (operation mode control); a control strategy based on control loops connected in cascade, whose aim is to control the battery and SC SOC (cascade control); a control based on the technique of equivalent fuel consumption, called equivalent consumption minimization strategy (ECMS); and two based on control techniques very used nowadays, the first one of them is a fuzzy logic control and the second one is a predictive control. These control strategies are tested and compared by applying them to a real urban street railway. The simulation results reflect the optimal performance of the presented control strategies and allow selecting the best option for being used in this type of high-power electric vehicles. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available