4.7 Article

Goal programming approach to solving network design problem with multiple objectives and demand uncertainty

Journal

EXPERT SYSTEMS WITH APPLICATIONS
Volume 39, Issue 4, Pages 4160-4170

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2011.09.118

Keywords

Network design; Multi-objective; Goal programming; Expected value model; Chance-constrained model; Dependent-chance model

Ask authors/readers for more resources

The transportation network design problem (NDP) with multiple objectives and demand uncertainty was originally formulated as a spectrum of stochastic multi-objective programming models in a bi-level programming framework. Solving these stochastic multi-objective NDP (SMONDP) models directly requires generating a family of optimal solutions known as the Pareto-optimal set. For practical implementation, only a good solution that meets the goals of different stakeholders is required. In view of this, we adopt a goal programming (GP) approach to solve the SMONDP models. The GP approach explicitly considers the user-defined goals and priority structure among the multiple objectives in the NDP decision process. Considering different modeling purposes, we provide three stochastic GP models with different philosophies to model planners' NDP decision under demand uncertainty, i.e., the expected value GP model, chance-constrained GP model, and dependent-chance GP model. Meanwhile, a unified simulation-based genetic algorithm (SGA) solution procedure is developed to solve all three stochastic GP models. Numerical examples are also presented to illustrate the practicability of the GP approach in solving the SMONDP models as well as the robustness of the SGA solution procedure. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Transportation

Impacts of the least perceived travel cost on the Weibit network equilibrium

Guangchao Wang, Kebo Tong, Anthony Chen, Hang Qi, Xiangdong Xu, Shoufeng Ma

Summary: This study investigates the impacts of the least perceived travel cost on the stochastic user equilibrium problem. The Weibit SUE models with a positive location parameter reduce perception variances route-specifically and resolve the scale insensitivity issue. Numerical results confirm the analytical results and demonstrate the efficiency and robustness of the proposed solution algorithm.

TRANSPORTMETRICA A-TRANSPORT SCIENCE (2023)

Article Management

Strategy-based transit stochastic user equilibrium model with capacity and number-of-transfers constraints

Guoyuan Li, Anthony Chen

Summary: This paper proposes a strategy-based transit stochastic user equilibrium (SUE) model that considers capacity and number-of-transfers constraints in an urban congested transit network. The model uses a route-section-based method for network representation and assumes passengers' route choice behavior obeys the logit model. The transit line capacity and maximum number-of-transfers constraints are considered, and the problem is formulated as a variational inequality (VI) problem. A transit path-set generation procedure is proposed, and the asymmetric cost function is solved using the diagonalization method.

EUROPEAN JOURNAL OF OPERATIONAL RESEARCH (2023)

Article Transportation

How to disseminate reliable waiting time in app-based transportation services considering attractiveness and credibility

Ruiya Chen, Xiangdong Xu, Anthony Chen, Xiaoning Zhang

Summary: This paper presents a conservative expected travel time approach, called MCET, for reporting reliable waiting time information in app-based transportation services, addressing the issues of existing information provision forms.

TRANSPORTMETRICA A-TRANSPORT SCIENCE (2023)

Article Transportation

A conservative expected travel time approach for traffic information dissemination under uncertainty

Ruiya Chen, Xiangdong Xu, Anthony Chen, Chao Yang

Summary: Travel time variability poses challenges to reporting travel time information. This paper proposes a conservative expected travel time approach to enhance information reliability and simplicity.

TRANSPORTMETRICA B-TRANSPORT DYNAMICS (2023)

Article Geography

Visualizing the impact of Covid-19 vaccine passports on pedestrain access to metro stations in Hong Kong

Yingying Xu, Dawei Cheng, Ho-Yin Chan, Anthony Chen

Summary: Pedestrian infrastructures in Hong Kong are important in enabling multi-level city life in a land-scarce vertical metropolis, with public spaces integrated into pedestrian networks playing a crucial role in neighborhood accessibility. The impact of Covid-19 vaccine passport (VP) restrictions on the use of public space on pedestrian accessibility to all 97 metro stations in Hong Kong is visualized. Pedestrians without a vaccine passport (PwoVP) are required to take significantly longer alternative routes, with VP-related access restrictions to indoor walkways doubling the shortest travel time for PwoVP and reducing accessibility to two-thirds of the stations by 50%.

REGIONAL STUDIES REGIONAL SCIENCE (2022)

Article Engineering, Civil

A Two-Step Model for Predicting Travel Demand in Expanding Subways

Kaipeng Wang, Pu Wang, Zhiren Huang, Ximan Ling, Fan Zhang, Anthony Chen

Summary: In this study, a two-step model is developed to predict passenger travel demand in expanding subways and tested in an actual subway. Results show that the proposed model achieves higher prediction accuracy than the benchmark models.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS (2022)

Review Transportation Science & Technology

Travel time reliability in transportation networks: A review of methodological developments

Zhaoqi Zang, Xiangdong Xu, Kai Qu, Ruiya Chen, Anthony Chen

Summary: This paper introduces the importance of modeling travel time reliability (TTR) in transportation networks and provides an integrated framework for summarizing the methodological developments and applications of TTR. By adopting a network perspective, a better understanding of TTR characterization, evaluation and valuation, and traffic assignment can be achieved. The paper also discusses some common challenges in TTR modeling and potential directions for future research.

TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES (2022)

Article Economics

Measurement and ranking of important link combinations in the analysis of transportation network vulnerability envelope buffers under multiple-link disruptions

Yu Gu, Anthony Chen, Xiangdong Xu

Summary: This study proposes an optimization-based approach to rank the importance of link combinations and analyze network vulnerability in extreme and near-extreme cases of disruption. A vulnerability envelope concept is used, which considers the worst and best network performance under multiple-link disruptions. The results demonstrate that the consideration of near-extreme cases yields additional valuable information that is not generated by the traditional vulnerability analysis.

TRANSPORTATION RESEARCH PART B-METHODOLOGICAL (2023)

Article Transportation Science & Technology

Modeling mode choice of customized bus services with loyalty subscription schemes in multi-modal transportation networks

Yu Gu, Anthony Chen

Summary: This study proposes an advanced equilibrium mode choice model to analyze the mode choice behavior of emerging customized bus (CB) services. The model considers the unique characteristics of CB services, including seat reservation and loyalty scheme. The results demonstrate the importance of considering passenger loyalty and managing mode similarity and heterogeneity when modeling emerging CB services.

TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES (2023)

Article Environmental Studies

Time for hydrogen buses? Dynamic analysis of the Hong Kong bus market

Zhuowei Wang, Jiangbo Yu, Guoyuan Li, Chengxiang Zhuge, Anthony Chen

Summary: This study investigates the feasibility and policy implications of achieving carbon neutrality in Hong Kong's public transportation through a competitive bus-market mechanism. A dynamic bus-market evolution model is established using the system dynamics method, which incorporates a generalized Lotka-Volterra model and discrete choice model. The results suggest that relying on business-as-usual policies and market evolution may not be sufficient to achieve the desired level of zero-emission buses, and long-term subsidies for hydrogen buses and support for hydrogen stations are effective measures to promote the hydrogen bus market.

TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT (2023)

Article Geography

Drawing metro maps in concentric circles: A designer-in-the-loop approach with visual examples

Ho-Yin Chan, Yingying Xu, Anthony Chen, Xintao Liu, Kason Ka Ching Cheung

Summary: This article introduces a proof-of-concept designer-in-the-loop schematic map drawing tool, which combines manual and automated approaches to provide technical interactivity between the user and the computer. Compared to existing methods, the proposed approach is more compatible with the framework of effective map design from psychological and aesthetic perspectives, and offers a range of options based on user preferences.

TRANSACTIONS IN GIS (2023)

Article Environmental Studies

Electrification of a citywide bus network: A data-driven micro-simulation approach

Shiqi Wang, Yuze Li, Anthony Chen, Chengxiang Zhuge

Summary: This paper develops a data-driven micro-simulation optimization model for deploying charging infrastructure for a large-scale electric bus network. The model considers both traditional charging posts and wireless charging lanes. The results show that deploying both charging posts and WCLs leads to higher levels of service, energy savings, and reduced emissions compared to deploying only charging posts, although the total costs are slightly higher. Sensitivity analysis confirms that parameters associated with electric buses and charging facilities significantly influence the model outputs.

TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT (2023)

Article Economics

Time and toll trade-off with heterogeneous users: A continuous time surplus maximization bi-objective user equilibrium model

Zhandong Xu, Anthony Chen, Xiaobo Liu

Summary: This paper presents a continuous time surplus maximization bi-objective user equilibrium (C-TSmaxBUE) model, in which the users' variability toward the time and toll trade-off in a tolled road network is explicitly considered. The model assigns different users with different ratios of the time saved per unit of money (RTSMs), and infinite indifference curves are generated by considering continuously distributed RTSMs in the population. A path-based single-boundary adjustment (SBA) algorithm is developed to solve the problem, which adjusts RTSM boundaries and path flows simultaneously. Numerical results demonstrate the equilibrium flow pattern and the efficiency of the SBA algorithm in obtaining high-quality equilibrium solutions.

TRANSPORTATION RESEARCH PART B-METHODOLOGICAL (2023)

Article Economics

Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations

Umer Mansoor, Arshad Jamal, Junbiao Su, N. N. Sze, Anthony Chen

Summary: Motorcycle crashes cause a significant number of fatalities and severe injuries worldwide, especially in developing countries. Machine learning methods have been found to provide better prediction performance, but with weaker interpretability. This study aims to compare the consistency of risk factors identified by statistical models and machine learning methods in analyzing motorcycle crash severity.

TRANSPORT POLICY (2023)

Proceedings Paper Computer Science, Artificial Intelligence

Stochastic Ridesharing User Equilibrium with Weibit Choice Model

Muqing Du, Jiankun Zhou, Anthony Chen

Summary: In this study, a weibit-based SUE model was proposed to address the stochastic ridesharing user equilibrium problem. The model considers the conversion of travelers among three modes and the relationship between the number of ridesharing drivers and passengers, as well as a non-additive path cost function.

2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC) (2022)

Review Computer Science, Artificial Intelligence

A comprehensive review of slope stability analysis based on artificial intelligence methods

Wei Gao, Shuangshuang Ge

Summary: This study provides a comprehensive review of slope stability research based on artificial intelligence methods, focusing on slope stability computation and evaluation. The review covers studies using quasi-physical intelligence methods, simulated evolutionary methods, swarm intelligence methods, hybrid intelligence methods, artificial neural network methods, vector machine methods, and other intelligence methods. The merits, demerits, and state-of-the-art research advancement of these studies are analyzed, and possible research directions for slope stability investigation based on artificial intelligence methods are suggested.

EXPERT SYSTEMS WITH APPLICATIONS (2024)

Article Computer Science, Artificial Intelligence

Machine learning approaches for lateral strength estimation in squat shear walls: A comparative study and practical implications

Khuong Le Nguyen, Hoa Thi Trinh, Saeed Banihashemi, Thong M. Pham

Summary: This study investigated the influence of input parameters on the shear strength of RC squat walls and found that ensemble learning models, particularly XGBoost, can effectively predict the shear strength. The axial load had a greater influence than reinforcement ratio, and longitudinal reinforcement had a more significant impact compared to horizontal and vertical reinforcement. The performance of XGBoost model outperforms traditional design models and reducing input features still yields reliable predictions.

EXPERT SYSTEMS WITH APPLICATIONS (2024)

Article Computer Science, Artificial Intelligence

DHESN: A deep hierarchical echo state network approach for algal bloom prediction

Bo Hu, Huiyan Zhang, Xiaoyi Wang, Li Wang, Jiping Xu, Qian Sun, Zhiyao Zhao, Lei Zhang

Summary: A deep hierarchical echo state network (DHESN) is proposed to address the limitations of shallow coupled structures. By using transfer entropy, candidate variables with strong causal relationships are selected and a hierarchical reservoir structure is established to improve prediction accuracy. Simulation results demonstrate that DHESN performs well in predicting algal bloom.

EXPERT SYSTEMS WITH APPLICATIONS (2024)

Article Computer Science, Artificial Intelligence

Learning high-dependence Bayesian network classifier with robust topology

Limin Wang, Lingling Li, Qilong Li, Kuo Li

Summary: This paper discusses the urgency of learning complex multivariate probability distributions due to the increase in data variability and quantity. It introduces a highly scalable classifier called TAN, which utilizes maximum weighted spanning tree (MWST) for graphical modeling. The paper theoretically proves the feasibility of extending one-dependence MWST to model high-dependence relationships and proposes a heuristic search strategy to improve the fitness of the extended topology to data. Experimental results demonstrate that this algorithm achieves a good bias-variance tradeoff and competitive classification performance compared to other high-dependence or ensemble learning algorithms.

EXPERT SYSTEMS WITH APPLICATIONS (2024)

Article Computer Science, Artificial Intelligence

Make a song curative: A spatio-temporal therapeutic music transfer model for anxiety reduction

Zhejing Hu, Gong Chen, Yan Liu, Xiao Ma, Nianhong Guan, Xiaoying Wang

Summary: Anxiety is a prevalent issue and music therapy has been found effective in reducing anxiety. To meet the diverse needs of individuals, a novel model called the spatio-temporal therapeutic music transfer model (StTMTM) is proposed.

EXPERT SYSTEMS WITH APPLICATIONS (2024)

Article Computer Science, Artificial Intelligence

A modified reverse-based analysis logic mining model with Weighted Random 2 Satisfiability logic in Discrete Hopfield Neural Network and multi-objective training of Modified Niched Genetic Algorithm

Nur Ezlin Zamri, Mohd. Asyraf Mansor, Mohd Shareduwan Mohd Kasihmuddin, Siti Syatirah Sidik, Alyaa Alway, Nurul Atiqah Romli, Yueling Guo, Siti Zulaikha Mohd Jamaludin

Summary: In this study, a hybrid logic mining model was proposed by combining the logic mining approach with the Modified Niche Genetic Algorithm. This model improves the generalizability and storage capacity of the retrieved induced logic. Various modifications were made to address other issues. Experimental results demonstrate that the proposed model outperforms baseline methods in terms of accuracy, precision, specificity, and correlation coefficient.

EXPERT SYSTEMS WITH APPLICATIONS (2024)

Article Computer Science, Artificial Intelligence

On taking advantage of opportunistic meta-knowledge to reduce configuration spaces for automated machine learning

David Jacob Kedziora, Tien-Dung Nguyen, Katarzyna Musial, Bogdan Gabrys

Summary: The paper addresses the problem of efficiently optimizing machine learning solutions by reducing the configuration space of ML pipelines and leveraging historical performance. The experiments conducted show that opportunistic/systematic meta-knowledge can improve ML outcomes, and configuration-space culling is optimal when balanced. The utility and impact of meta-knowledge depend on various factors and are crucial for generating informative meta-knowledge bases.

EXPERT SYSTEMS WITH APPLICATIONS (2024)

Article Computer Science, Artificial Intelligence

Optimal location for an EVPL and capacitors in grid for voltage profile and power loss: FHO-SNN approach

G. Sophia Jasmine, Rajasekaran Stanislaus, N. Manoj Kumar, Thangamuthu Logeswaran

Summary: In the context of a rapidly expanding electric vehicle market, this research investigates the ideal locations for EV charging stations and capacitors in power grids to enhance voltage stability and reduce power losses. A hybrid approach combining the Fire Hawk Optimizer and Spiking Neural Network is proposed, which shows promising results in improving system performance. The optimization approach has the potential to enhance the stability and efficiency of electric grids.

EXPERT SYSTEMS WITH APPLICATIONS (2024)

Article Computer Science, Artificial Intelligence

NLP-based approach for automated safety requirements information retrieval from project documents

Zhijiang Wu, Guofeng Ma

Summary: This study proposes a natural language processing-based framework for requirement retrieval and document association, which can help to mine and retrieve documents related to project managers' requirements. The framework analyzes the ontology relevance and emotional preference of requirements. The results show that the framework performs well in terms of iterations and threshold, and there is a significant matching between the retrieved documents and the requirements, which has significant managerial implications for construction safety management.

EXPERT SYSTEMS WITH APPLICATIONS (2024)

Article Computer Science, Artificial Intelligence

Dog nose-print recognition based on the shape and spatial features of scales

Yung-Kuan Chan, Chuen-Horng Lin, Yuan-Rong Ben, Ching-Lin Wang, Shu-Chun Yang, Meng-Hsiun Tsai, Shyr-Shen Yu

Summary: This study proposes a novel method for dog identification using nose-print recognition, which can be applied to controlling stray dogs, locating lost pets, and pet insurance verification. The method achieves high recognition accuracy through two-stage segmentation and feature extraction using a genetic algorithm.

EXPERT SYSTEMS WITH APPLICATIONS (2024)

Article Computer Science, Artificial Intelligence

Fostering supply chain resilience for omni-channel retailers: A two-phase approach for supplier selection and demand allocation under disruption risks

Shaohua Song, Elena Tappia, Guang Song, Xianliang Shi, T. C. E. Cheng

Summary: This study aims to optimize supplier selection and demand allocation decisions for omni-channel retailers in order to achieve supply chain resilience. It proposes a two-phase approach that takes into account various factors such as supplier evaluation and demand allocation.

EXPERT SYSTEMS WITH APPLICATIONS (2024)

Article Computer Science, Artificial Intelligence

Accelerating Benders decomposition approach for shared parking spaces allocation considering parking unpunctuality and no-shows

Jinyan Hu, Yanping Jiang

Summary: This paper examines the allocation problem of shared parking spaces considering parking unpunctuality and no-shows. It proposes an effective approach using sample average approximation (SAA) combined with an accelerating Benders decomposition (ABD) algorithm to solve the problem. The numerical experiments demonstrate the significance of supply-demand balance for the operation and user satisfaction of the shared parking system.

EXPERT SYSTEMS WITH APPLICATIONS (2024)

Review Computer Science, Artificial Intelligence

Financial fraud detection using graph neural networks: A systematic review

Soroor Motie, Bijan Raahemi

Summary: Financial fraud is a persistent problem in the finance industry, but Graph Neural Networks (GNNs) have emerged as a powerful tool for detecting fraudulent activities. This systematic review provides a comprehensive overview of the current state-of-the-art technologies in using GNNs for financial fraud detection, identifies gaps and limitations in existing research, and suggests potential directions for future research.

EXPERT SYSTEMS WITH APPLICATIONS (2024)

Review Computer Science, Artificial Intelligence

Occluded person re-identification with deep learning: A survey and perspectives

Enhao Ning, Changshuo Wang, Huang Zhang, Xin Ning, Prayag Tiwari

Summary: This review provides a detailed overview of occluded person re-identification methods and conducts a systematic analysis and comparison of existing deep learning-based approaches. It offers important theoretical and practical references for future research in the field.

EXPERT SYSTEMS WITH APPLICATIONS (2024)

Article Computer Science, Artificial Intelligence

A hierarchical attention detector for bearing surface defect detection

Jiajun Ma, Songyu Hu, Jianzhong Fu, Gui Chen

Summary: The article presents a novel visual hierarchical attention detector for multi-scale defect location and classification, utilizing texture, semantic, and instance features of defects through a hierarchical attention mechanism, achieving multi-scale defect detection in bearing images with complex backgrounds.

EXPERT SYSTEMS WITH APPLICATIONS (2024)