4.7 Article

The effect of hemorrhage on the development of the postnatal mouse cerebellum

Journal

EXPERIMENTAL NEUROLOGY
Volume 252, Issue -, Pages 85-94

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2013.11.010

Keywords

Preterm brain injury; Preterm cerebellar hemorrhage; Mouse model; Behavioral phenotype; Cerebellar granule cells; Gene expression; Cerebellar development

Categories

Funding

  1. Canadian Institutes of Health Research (CIHR)
  2. Canadian Institute for Advanced Research (CIFAR)

Ask authors/readers for more resources

Recent studies have shown that hemorrhagic injury in the preterm cerebellum leads to long-term neurological sequelae, such as motor, affective, and cognitive dysfunction. How cerebellar hemorrhage (CBH) affects the development and function of the cerebellum is largely unknown. Our study focuses on developing a mouse model of CBH to determine the anatomical, behavioral, and molecular phenotypes resulting from a hemorrhagic insult to the developing cerebellum. To induce CBH in the postnatal mouse cerebellum, we injected bacterial collagenase, which breaks down surrounding blood vessel walls, into the fourth ventricle at postnatal day two. We found a reduction in cerebellar size during postnatal growth, a decrease in granule cells, and persistent neurobehavioural abnormalities similar to abnormalities reported in preterm infants with CBH. We further investigated the molecular pathways that may be perturbed due to postnatal CBH and found a significant upregulation of genes in the inflammatory and sonic hedgehog pathway. These results point to an activation of endogenous mechanisms of injury and neuroprotection in response to postnatal CBH. Our study provides a preclinical model of CBH that may be used to understand the pathophysiology of preterm CBH and for potential development of preventive therapies and treatments. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available