4.6 Article

Thrombin induces rapid disassembly of claudin-5 from the tight junction of endothelial cells

Journal

EXPERIMENTAL CELL RESEARCH
Volume 315, Issue 17, Pages 2879-2887

Publisher

ELSEVIER INC
DOI: 10.1016/j.yexcr.2009.07.031

Keywords

Embryonic stem cells; Endothelial cells; Cell-cell junction; Thrombin; Claudin-5; PAR1

Funding

  1. JST

Ask authors/readers for more resources

The cell-to-cell junction of endothelial cells (ECs) regulates the fence function of the vascular system. Previously we showed that ECs derived from embryonic stem cells (i.e., EECs) develop to form stable endothelial sheets in monolayer cultures. Immunohistochemical analysis revealed that these EECs formed intercellular junctions with the help of vascular endothelial cadherin (VECD) and claudin-5. In this study, we investigated the response of EC sheets to stimuli that are known to increase vascular permeability. While vascular endothelial growth factor A and histamine disrupted the EC junction by enhancing contraction of EECs, thrombin affected specifically the localization of claudin-5 at this junction. We could not detect any significant effect of thrombin on the localization of VECD. Concerning thrombin receptors, EECs expressed protease-activated receptor 1 (PAR1) but not PAR4. Consistent with this expression pattern, PART agonists eliminated claudin-5 as effectively as thrombin itself. This is the first report to show that claudin-5 can be disassembled from the EC junction in a signal-dependent manner and to suggest that claudin-5 mobilization is a cause of PART-induced increase in vascular permeability. (C) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available