4.7 Article

Synthesis and properties of canola protein-based superabsorbent hydrogels

Journal

EUROPEAN POLYMER JOURNAL
Volume 54, Issue -, Pages 172-180

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eurpolymj.2014.03.007

Keywords

Hydrogels; Canola proteins; Structural properties; Synthesis

Funding

  1. Start-Up Fund of McGill University

Ask authors/readers for more resources

The present work reports, for the first time, the synthesis and characterization of canola protein-based hydrogels. These hydrogels were synthesized by solution based graft copolymerization of acrylic acid monomers on the canola protein backbones in the presence of a crosslinker (N,N'-methylenebis (acrylymide)) and initiators (sodium bisulfite and potassium persulfate). The grafting was confirmed by means of Fourier transform infrared spectroscopy. The contributions of the crosslinker, initiator and neutralization degree to the hydrogel were investigated by applying differential scanning calorimetry, thermogravimetric analysis, swelling test, scanning electron microscope. The macromolecules exhibited extraordinary water absorbency capacity in distilled water. The highest equilibrium swelling of hydrogel in distilled water reached 448 g/g of hydrogel in 48 h. The swelling properties of the optimized hydrogel were also studied at various pH and saline concentrations. The hydrogels responded spontaneously to these changes, which may confer them the title of smart materials. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Materials Science, Composites

Surface functionalization of cellulose fibres and their incorporation in renewable polymeric matrices

B. Ly, W. Thielemans, A. Dufresne, D. Chaussy, M. N. Belgacem

COMPOSITES SCIENCE AND TECHNOLOGY (2008)

Article Materials Science, Multidisciplinary

Surface functionalization of cellulose by grafting oligoether chains

El Hadji Babacar Ly, Julien Bras, Patrizia Sadocco, Mohamed Naceur Belgacem, Alain Dufresne, Wim Thielemans

MATERIALS CHEMISTRY AND PHYSICS (2010)

Article Materials Science, Biomaterials

Grafting of cellulose by fluorine-bearing silane coupling agents

B. Ly, M. N. Belgacem, J. Bras, M. C. Brochier Salon

MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS (2010)

Article Materials Science, Textiles

Effect of Reinforcing Fillers and Fibres Treatment on Morphological and Mechanical Properties of Typha-Phenolic Resin Composites

Elhadji Babacar Ly, Marieme Josephine Lette, Abdou Karim Diallo, Adama Gassama, Akito Takasaki, Diene Ndiaye

FIBERS AND POLYMERS (2019)

Article Engineering, Electrical & Electronic

Stability of pentacene-based top gate thin film transistor with thick parylene as dielectric under humid environment

Abdou Karim Diallo, Mane Seck, El Hadji Babacar Ly, Mohsen Erouel, Diene Ndiaye

MICROELECTRONICS RELIABILITY (2019)

Article Engineering, Electrical & Electronic

Numerical Modeling of Glucose Biosensor With pH-Based Electrochemical Field-Effect Transistor Device

Moussa Ba, Abdou Karim Diallo, El Hadji Babacar Ly, Jerome Launay, Pierre Temple-Boyer

IEEE TRANSACTIONS ON ELECTRON DEVICES (2020)

Article Materials Science, Multidisciplinary

Low voltage organic transistors with water-processed gum arabic dielectric

Mane Seck, Navid Mohammadian, Abdou K. Diallo, Sheida Faraji, Meriem Saadi, Mohsen Erouel, El Hadji Babacar Ly, Kamel Khirouni, Leszek A. Majewski

SYNTHETIC METALS (2020)

Article Polymer Science

Addressable and stable physically unclonable functions based on cross-linked poly(2-vinylpyridine)

Mustafa Kalay, Abidin Esidir, Mahmut Ruzi, N. Burak Kiremitler, Mustafa Serdar Onses

Summary: This study proposes stable and addressable polymer PUFs, utilizing a cross-linkable polymer system, which demonstrates high stochastic characteristics and low-cost production. The performance of the polymer features is evaluated through various analyses, and direct image authentication is achieved using feature matching algorithms.

EUROPEAN POLYMER JOURNAL (2024)

Article Polymer Science

Low migration and high performance thioxanthone based photoinitiators

Jingyu Jin, Guoqiang Lu, Jun Nie, Xiaoqun Zhu

Summary: Photopolymerization technology is limited in the fields of food packaging and biomedicine due to the high migration of small molecules from photoinitiators. In this study, a polymerizable 2-vinyl thioxanthone (ETX) was synthesized to improve the migration stability of photoinitiators. Macromolecular photoinitiators (PPI1, PPI2) were also prepared to further reduce migration. The results showed that the ETX/TEOA system had higher initiation performance and PPI2 displayed favorable initiation ability. Additionally, the migration of ETX, PPI1, and PPI2 in photocured film was significantly reduced. These low-migration photoinitiators have potential applications in the fields of food packaging and biological materials.

EUROPEAN POLYMER JOURNAL (2024)

Article Polymer Science

Photoinitiators with low migration capability based on benzophenone

Weijie Li, Jun Nie, Yingying Zhao, Xiaoqun Zhu

Summary: This study focuses on the development of high-performance, low-migration photoinitiators. A polymerizable photoinitiator (VBP) was synthesized by introducing an ethylene group into benzophenone, and three different molecular weight single-component photoinitiators (PVBN1-3) were synthesized based on VBP. The results show that these new photoinitiators have stronger absorption ability compared to benzophenone and significantly reduce the migration of initiators and co-initiators, addressing the safety concerns caused by migration.

EUROPEAN POLYMER JOURNAL (2024)

Article Polymer Science

Covalent Introduction of Plasma-Treated carbon nanotubes into polyimide nanocomposites at Ultra-Low content

Seira Morimune-Moriya, Yuki Iwahashi, Mitsuru Nakamura, Daisuke Ogawa, Keiji Nakamura

Summary: This study investigates the effect of plasma treatment on carbon nanotubes (CNTs) and the structure/properties of polyimide (PI) nanocomposites with ultra-low content of CNTs. The results show that plasma treatment introduces isocyanate groups on the surface of CNTs and enhances the interfacial interaction between PI and treated CNTs. This leads to a significant improvement in the mechanical properties of the nanocomposites, with even a small addition of treated CNTs showing a substantial increase in Young's modulus, tensile strength and toughness.

EUROPEAN POLYMER JOURNAL (2024)

Article Polymer Science

Hydroxyethyl cellulose-based stretchable, antifreeze, ion-conductive hydrogel sensor

Yuanlong Li, Chaojie Chen, Guoqing Cui, Li Liu, Chao Zhou, Guangfeng Wu

Summary: In this study, a novel ion-conducting hydrogel was fabricated using a straightforward approach. The hydrogel showed excellent tensile properties and high toughness due to physical interactions and covalent binding. Additionally, the introduction of hydroxyethyl cellulose and lithium chloride improved the biocompatibility, mechanical properties, electrical conductivity, and frost resistance of the hydrogel, demonstrating its potential for cold climate applications.

EUROPEAN POLYMER JOURNAL (2024)

Article Polymer Science

How does the precursor backbone length affect the grafting efficiency and kinetics for bottlebrush polystyrenes prepared by graft-onto Strategy?

Dengwei Yan, Jinxian Yang, Xuejun Pan, Xiaozheng Duan, Lianwei Li, Mo Zhu

Summary: The influence of backbone length on grafting efficiency during the graft-onto reaction process was investigated. It was found that the polydispersity effect of backbone length does not affect the final grafting efficiency, indicating that the local dynamics of chain segments dominate the graft-onto process.

EUROPEAN POLYMER JOURNAL (2024)

Article Polymer Science

Catalyst-free epoxy vitrimers from rosin: Highly mechanical performance, fast self-healing, and facile recycling

Zhaoyi Luo, Xianjie Pan, Fanqi Liu, Quanxi Yi, Yanning Zeng, Yunhua Chen, Chaoyang Wang

Summary: This study provides a method to prepare high-performance epoxy materials with good malleability and thermal stability. The materials have self-healing and welding capabilities, thanks to the addition of specific chemical bonds and network structures. They exhibit mechanical properties comparable to commercial epoxy resins and show great potential for sustainable industrial development.

EUROPEAN POLYMER JOURNAL (2024)

Article Polymer Science

Novel triazine-based sulfur-containing polyamides: Preparation, adsorption efficiency and mechanism for mercury ions

Chaoji Xiong, Hao Wang, Lihua Deng, Kun Liang, Chunhua Wu, Wei Wu, Qian Chen

Summary: In this study, four polyamides were synthesized and their adsorption performances for Hg2+ in aqueous systems were investigated. The polyamides exhibited high adsorption capacities and excellent reusability, with the involvement of sulfur, nitrogen, and oxygen in the chemical adsorption process of Hg2+.

EUROPEAN POLYMER JOURNAL (2024)

Article Polymer Science

Combining isosorbide and lignin-related benzoic acids for high-Tg polymethacrylates

Siim Laanesoo, Olivier Bonjour, Rauno Sedrik, Iris Tamsalu, Patric Jannasch, Lauri Vares

Summary: The insertion of rigid aliphatic or aromatic building blocks in polymer structures is an effective way to synthesize high -Tg polymer materials. In this study, a series of isosorbide-2-aryl carboxylate-5-methacrylate monomers (ArIMAs) were synthesized by functionalizing isosorbide 5-methacrylate with various aromatic lignin-inspired esters. These monomers were polymerized to obtain high molecular-weight poly(aryl carboxylate isosorbide methacrylates) (PArIMAs). The resulting polymers showed high glass transition temperatures and thermal stability, making them suitable for use as high-performance plastics and coatings.

EUROPEAN POLYMER JOURNAL (2024)

Article Polymer Science

Influence of tannic acid post-treatment on the degradation and drug release behavior of Schiff base crosslinked konjac glucomannan/chitosan hydrogel

Yuqian Wu, Weijie Xu, Jianliang Li, Zhangfeng Zhong, Liqing Huang, Shengke Li, Huaping Tan

Summary: This study investigates the improvement of degradation and drug release characteristics of dynamic Schiff base-mediated natural polysaccharide hydrogels using tannic acid (TA), leading to enhanced stability and functionality.

EUROPEAN POLYMER JOURNAL (2024)

Article Polymer Science

Antimicrobial and anti-freezing conductive hydrogels driven by quaternary ammonium chitosan salt for flexible strain sensors

Xi Zhang, Xiangli Kong, Xin Zhou, Yiyan Gao, Yibo Sun, Guanghui Gao, Wei Liu, Kai Shi

Summary: Conductive hydrogels have great development prospects in flexible strain sensors, but long-term direct contact with human skin can cause bacterial infection. A hydrogel with antibacterial, biocompatibility, and toughness was designed and manufactured using a freeze-thaw method. The hydrogel maintains tensile properties and fatigue resistance at low temperatures and is resistant to bacteria. Therefore, hydrogel sensors can be used to monitor human movements.

EUROPEAN POLYMER JOURNAL (2024)

Article Polymer Science

Polyacrylamide quaternary ammonium salts based on stable adsorption in soil and its application on the control of soil-borne fungal disease

Wei Zhang, Jiangang Yu, Mingyang Wu, Rui Li, Anqiang Zhang, Yaling Lin

Summary: In this study, polyacrylamide containing quaternary ammonium salts (PAM-X) were synthesized and found to effectively inhibit soil-borne pathogenic fungi while maintaining the balance of microbial population in soil. PAM-X also showed low toxicity to earthworms and fish, providing a new method for the prevention and control of soil-borne fungal diseases.

EUROPEAN POLYMER JOURNAL (2024)

Article Polymer Science

Hygroscopic photothermal sorbents for atmospheric water harvesting: From preparation to applications

Jiawen He, Haojie Yu, Li Wang, Jian Yang, Yanhui Zhang, Wenbing Huang, Chenguang Ouyang

Summary: This review discusses the use of polymeric hydrogels for atmospheric water harvesting (AWH), including the mechanism of water sorption, fabrication methods, and strategies for optimizing the structure of hydrogels. The extended applications of hygroscopic photothermal hydrogels, such as agricultural irrigation and dehumidification, are also explored. The challenges and prospects of using polymeric hydrogels for AWH are summarized.

EUROPEAN POLYMER JOURNAL (2024)

Article Polymer Science

Plant-Inspired conductive hydrogels with long-lasting stability and low temperature tolerance for flexible sensors and signal transmission carriers

Ying Du, Shuaishuai Lu, Yuanna Sun, Qingshan Li, Xinhai He

Summary: This study introduces a method to improve the performance of hydrogels by incorporating proline, resulting in hydrogels with excellent stretchability, high conductivity, and long-term stability. The hydrogel remains flexible and conductive even at ultra-low temperatures.

EUROPEAN POLYMER JOURNAL (2024)