4.8 Article

Fluorescence Activation Imaging of Cytochrome c Released from Mitochondria Using Aptameric Nanosensor

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 137, Issue 2, Pages 982-989

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja511988w

Keywords

-

Funding

  1. NSFC [21275045, 21190041]
  2. NSF of Hunan [12JJ1004]
  3. [NCET-11-0121]

Ask authors/readers for more resources

We have developed an aptameric nanosensor for fluorescence activation imaging of cytochrome c (Cyt c). Fluorescence imaging tools that enable visualization of key molecular players in apoptotic signaling are essential for cell biology and clinical theranostics. Cyt c is a major mediator in cell apoptosis. However, fluorescence imaging tools allowing direct visualization of Cyt c translocation in living cells have currently not been realized. We report for the first time the realization of a nanosensor tool that enables direct fluorescence activation imaging of Cyt c released from mitochondria in cell apoptosis. This strategy relies on spatially selective cytosolic delivery of a nanosensor constructed by assembly of a fluorophore-tagged DNA aptamer on PEGylated graphene nanosheets. The cytosolic release of Cyt c is able to dissociate the aptamer from graphene and trigger an activated fluorescence signal. The nanosensor is shown to exhibit high sensitivity and selectivity, rapid response, large signal-to-background ratio for in vitro, and intracellular detection of Cyt c. It also enables real-time visualization of the Cyt c release kinetics and direct identification of the regulators for apoptosis. The developed nanosensor may provide a very valuable tool for apoptotic studies and catalyze the fundamental interrogations of Cyt c-mediated biology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available