4.8 Article

Zn-Catalyzed Enantio- and Diastereoselective Formal [4+2] Cycloaddition Involving Two Electron-Deficient Partners: Asymmetric Synthesis of Piperidines from 1-Azadienes and Nitro-Alkenes

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 137, Issue 13, Pages 4445-4452

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.5b00033

Keywords

-

Funding

  1. NIGMS [GM80442]
  2. Croucher Foundation
  3. NIH Ruth Kirschstein Predoctoral Fellowship

Ask authors/readers for more resources

We report a catalytic asymmetric synthesis of piperidines through [4 + 2] cycloaddition of 1-azadienes and nitro-alkenes. The reaction uses earth abundant Zn as catalyst and is highly diastereo- and regioselective. A novel BOPA ligand (F-BOPA) confers high reactivity and enantioselectivity in the process. The presence of ortho substitution on the arenes adjacent to the bis(oxazolines) was found to be particularly impactful, due to limiting the undesired coordination of 1-azadiene to the Lewis acid and thus allowing the reaction to be carried out at lower temperature. A series of secondary kinetic isotope effect studies using a range of ligands implicates a stepwise mechanism for the transformation, involving an initial Michael-type addition of the imine to the nitro-alkene followed by a cyclization event. The stepwise mechanism obviates the electronic requirement inherent to a concerted mechanism, explaining the successful cycloaddition between two electron-deficient partners.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available