4.6 Article

Improvement of therapeutic efficacy of PLGA nanoformulation of siRNA targeting anti-apoptotic Bcl-2 through chitosan coating

Journal

EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES
Volume 48, Issue 4-5, Pages 611-618

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejps.2012.12.017

Keywords

Poly (d,l-lactide-co-glycolide); Chitosan; siRNA; Apoptosis; Bcl-2 and cancer

Ask authors/readers for more resources

Potential use of siRNA as therapeutic agent has elicited a great deal of interest. However, insufficient cellular uptake and poor stability limited its application in therapeutics. In our earlier study, we prepared PLGA nanoparticles for effective delivery of siRNA targeting Bcl-2 gene to block its expression. Purpose of the present study was to improve effectiveness of PLGA nanoformulation of siRNA targeting antiapoptotic Bcl-2 gene through chitosan coating. We prepared chitosan coated PLGA nanoparticles by using the double emulsion solvent diffusion (DESE) method. Characterization of prepared chitosan coated nanoformulation was done followed by cytotoxicity studies, expression studies and in vivo studies. Particle size of chitosan coated nanoparticles was found to be increased compared to PLGA nanoparticles from 244 to 319 nm. Surface charge of chitosan coated nanoparticles was found to be positive facilitating transfection of nanoformulation into cells. In vitro studies indicated increased transfection of nanoparticles resulting in effective silencing of Bcl-2. Marked apoptotic lesions were observed in nuclear staining studies. On comparison of the results from the present study with those of previous study, it was found that the extent of silencing of Bcl-2 gene by PLGA nanoformulation has improved significantly through chitosan coating. In vivo studies showed significant tumor regression in animals treated with chitosan coated PLGA nanoformulation of siRNA. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available