4.6 Article

In-vitro and in-vivo evaluation of carrageenan/methylcellulose polymeric systems for transscleral delivery of macromolecules

Journal

EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES
Volume 44, Issue 3, Pages 399-409

Publisher

ELSEVIER
DOI: 10.1016/j.ejps.2011.08.026

Keywords

Transscleral drug delivery; In-situ gelling systems; Carrageenan; Methylcellulose; Antisense oligonucleotides; Rheology

Funding

  1. University of Auckland
  2. New Zealand Pharmacy Education and Research Fund

Ask authors/readers for more resources

In this study, polymeric dispersions composed of methylcellulose (MC) and either kappa carrageenan (KC) or iota carrageenan (IC) were proposed as a platform for transscleral delivery of macromolecules. The additive effects of the two polymers were investigated using oscillatory rheometer and FT-IR spectroscopy. Mechanical spectra demonstrated a conformation dependent association of the two polymers at 37 degrees C in the presence of selected counter ions. The polymer association was also confirmed by the shifts in MC peaks at 1049.5, 1114 and 1132.9 cm(-1) in the presence of carrageenans, which corresponds to the stretching vibrations of C-O-C bonds of the polysaccharides. The MC-IC polymeric system displayed the highest bio-adhesion, owing to the relatively high negative charge. However, the MC-IC system did not affect the in-vitro scleral permeability of sodium fluorescein and 10 kDa FITC-dextran. Nonetheless, the formulation properties had a substantial impact on the results of the in-vivo studies. The efficacy of transscleral drug delivery was determined using rats with altered connexin 43 (Cx43) levels, a gap junction protein, in the choroid. Periocular injection of Cx43 antisense oligonucleotides (AsODN) incorporated in the MC-IC system lead to a significant reduction in the Cx43 levels in the choroid of rats at 24 h of treatment. AsODN incorporated in phosphate buffered saline (PBS) also demonstrated a trend towards reduced Cx43 levels: however this was not statistically significant owing to great variability between treated animals. Consequently the in-vivo data suggests the transscleral route to be of value in delivering therapeutics to the choroid. Moreover this study identified a new polymeric system based on MC and IC which provides aqueous loading of therapeutics and prolonged retention at the site of administration. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available