4.5 Review

Serine racemase as a prime target for age-related memory deficits

Journal

EUROPEAN JOURNAL OF NEUROSCIENCE
Volume 37, Issue 12, Pages 1931-1938

Publisher

WILEY
DOI: 10.1111/ejn.12226

Keywords

ageing; d-serine; glycine-binding site; hippocampus; N-methyl-d-aspartate receptors; synaptic plasticity

Categories

Ask authors/readers for more resources

The learning and memory deficits associated with non-pathological ageing mainly result from alterations to the plasticity of neuronal network dynamics within the hippocampus. In addition to the broad spectrum of changes that affect the morphology and function of hippocampal excitatory circuits in the ageing brain, the impaired activation of the N-methyl-d-aspartate subtype of glutamate receptors (NMDA-R) is a typical feature, altering the induction and maintenance of long-term potentiation, a major form of synaptic plasticity. In addition to glutamate, the binding of a co-agonist at the strychnine-insensitive glycine-binding site is required for NMDA-R activation. This review presents recent evidence that: (i) the amino acid d-serine is an endogenous co-agonist of synaptic NMDA-R and necessary for long-term potentiation expression, (ii) reduced d-serine levels in the hippocampus contribute to synaptic plasticity and memory deficits in normal ageing, and (iii) age-related oxidative stress selectively targets hippocampal serine racemase to impact d-serine availability in neuronal networks. These results emphasize the critical role of the hippocampal d-serine-dependent pathway in changes affecting neuronal network dynamics in physiological ageing that underlie memory deficits. In addition, the central role of serine racemase in these changes opens new perspectives in the search for relevant therapeutic strategies aimed at reducing age-related memory defects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available