4.5 Article

Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons

Journal

EUROPEAN JOURNAL OF NEUROSCIENCE
Volume 31, Issue 9, Pages 1521-1532

Publisher

WILEY
DOI: 10.1111/j.1460-9568.2010.07218.x

Keywords

cerebral cortex; dendrite; differentiation; histone modification; rodent

Categories

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [16700286, 18300105]
  2. Nakajima Foundation
  3. Grants-in-Aid for Scientific Research [18300105, 16700286] Funding Source: KAKEN

Ask authors/readers for more resources

Transcriptional regulation of gene expression is thought to play a pivotal role in activity-dependent neuronal differentiation and circuit formation. Here, we investigated the role of histone deacetylase 9 (HDAC9), which regulates transcription by histone modification, in the development of neocortical neurons. The translocation of HDAC9 from nucleus to cytoplasm was induced by an increase of spontaneous firing activity in cultured mouse cortical neurons. This nucleocytoplasmic translocation was also observed in postnatal development in vivo. The translocation-induced gene expression and cellular morphology was further examined by introducing an HDAC9 mutant that disrupts the nucleocytoplasmic translocation. Expression of c-fos, an immediately-early gene, was suppressed in the mutant-transfected cells regardless of neural activity. Moreover, the introduction of the mutant decreased the total length of dendritic branches, whereas knockdown of HDAC9 promoted dendritic growth. These findings indicate that chromatin remodeling with nucleocytoplasmic translocation of HDAC9 regulates activity-dependent gene expression and dendritic growth in developing cortical neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available