4.7 Article

Probing homodimer formation of epidermal growth factor receptor by selective crosslinking

Journal

EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
Volume 88, Issue -, Pages 34-41

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ejmech.2014.07.041

Keywords

S-CROSS; SNAP-tag; Receptor tyrosine kinase; Phosphorylation

Ask authors/readers for more resources

Ligand binding promotes conformational rearrangement of the epidermal growth factor receptor (EGFR) leading to receptor autophosphorylation and downstream signaling. However, transient interactions between unstimulated EGFR molecules on the cell surface are not fully understood. In this report, we describe the investigation of homodimer formation of EGFR by means of an SNAP-tag based selective crosslinking approach (S-CROSS). EGFR homodimers were selectively captured in living cells and utilized for analysis of protein receptor interactions on the plasma membrane and ligand-induced activation. We showed that EGFR forms homodimers in unstimulated cells with efficiencies similar to hose seen in cells treated with the epidermal growth factor ligand (EGF) supporting the existence of constitutive transient receptor receptor interactions. EGFR crosslinked homodimers displayed a substantially increase in kinase activation upon ligand stimulation. Interestingly, in unstimulated cells the levels of spontaneous phosphorylation were found to correlate with the yields of the crosslinked homodimers species. In addition, we demonstrated that this crosslinking approach can be applied to interrogate the effect of small molecule inhibitors on receptor dimerization and kinase activity. Our crosslinking assay provides a new tool to dissect ligand-independent dimerization and activation mechanisms of receptor tyrosine kinases, many of which are important anticancer drug targets. (C) 2014 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available