4.7 Article

Computational structure-activity relationship analysis of small-molecule agonists for human formyl peptide receptors

Journal

EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
Volume 45, Issue 11, Pages 5406-5419

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ejmech.2010.09.001

Keywords

Formyl peptide receptor (FPR); FPR agonists; Atom pairs; Molecular descriptors; Structure-activity relationship analysis

Funding

  1. National Institutes of Health [P20 RR-020185, HHSN266200400009C]
  2. M.J. Murdock Charitable Trust
  3. Montana State University Agricultural Experimental Station

Ask authors/readers for more resources

N-Formyl peptide receptors (FPRs) are important in host defense. Because of the potential for FPRs as therapeutic targets, recent efforts have focused on identification of non-peptide agonists for two FPR subtypes, FPR1 and FPR2. Given that a number of specific small-molecule agonists have recently been identified, we hypothesized that computational structure activity relationship (SAR) analysis of these molecules could provide new information regarding molecular features required for activity. We used a training set of 71 compounds, including 10 FPR1-specific agonists, 36 FPR2-specific agonists, and 25 non-active analogs. A sequence of (1) one-way analysis of variance selection, (2) cluster analysis, (3) linear discriminant analysis, and (4) classification tree analysis led to the derivation of SAR rules with high (95.8%) accuracy for correct classification of compounds. These SAR rules revealed key features distinguishing FPR1 versus FPR2 agonists. To verify predictive ability, we evaluated a test set of 17 additional FPR agonists, and found that the majority of these agonists (>94%) were classified correctly as agonists. This study represents the first successful application of classification tree methodology based on atom pairs to SAR analysis of FPR agonists. Importantly, these SAR rules represent a relatively simple classification approach for virtual screening of FPR1/FPR2 agonists. (C) 2010 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available