4.4 Article

Bone cross-sectional geometry in male runners, gymnasts, swimmers and non-athletic controls: a hip-structural analysis study

Journal

EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
Volume 112, Issue 2, Pages 535-541

Publisher

SPRINGER
DOI: 10.1007/s00421-011-2008-y

Keywords

Femoral neck; Bone structure; Bone strength; Men; Exercise; Sport

Ask authors/readers for more resources

Loading of the skeleton is important for the development of a functionally and mechanically appropriate bone structure, and can be achieved through impact exercise. Proximal femur cross-sectional geometry was assessed in the male athletes (n = 55) representing gymnastics, endurance running and swimming, and non-athletic controls (n = 22). Dual energy X-ray absorptiometry (iDXA, GE Healthcare, UK) measurements of the total body (for body composition) and the left proximal femur were obtained. Advanced hip structural analysis (AHA) was utilised to determine the areal bone mineral density (aBMD), hip axis length (HAL), cross-sectional area (CSA), cross-sectional moment of inertia (CSMI) and the femoral strength index (FSI). Gymnasts and runners had greater age, height and weight adjusted aBMD than in swimmers and controls (p < 0.05). Gymnasts and runners had greater resistance to axial loads (CSA) and the runners had increased resistance against bending forces (CSMI) compared to swimmers and controls (p < 0.01). Controls had a lower FSI compared to gymnasts and runners (1.4 vs. 1.8 and 2.1, respectively, p < 0.005). Lean mass correlated with aBMD, CSA and FSI (r = 0.365-0.457, p < 0.01), particularly in controls (r = 0.657-0.759, p < 0.005). Skeletal loading through the gymnastics and running appears to confer a superior bone geometrical advantage in the young adult men. The importance of lean body mass appears to be of particular significance for non-athletes. Further characterisation of the bone structural advantages associated with different sports would be of value to inform the strategies directed at maximising bone strength and thus, preventing fracture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available