4.4 Article

Inertia from an asymmetric Casimir effect

Journal

EPL
Volume 101, Issue 5, Pages -

Publisher

EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY
DOI: 10.1209/0295-5075/101/59001

Keywords

-

Ask authors/readers for more resources

The property of inertia has never been fully explained. A model for inertia (MiHsC or quantised inertia) has been suggested that assumes that 1) inertia is due to Unruh radiation and 2) this radiation is subject to a Hubble-scale Casimir effect. This model has no adjustable parameters and predicts the cosmic acceleration, and galaxy rotation without dark matter, suggesting that Unruh radiation indeed causes inertia, but the exact mechanism by which it does this has not been specified. The mechanism suggested here is that when an object accelerates, for example to the right, a dynamical (Rindler) event horizon forms to its left, reducing the Unruh radiation on that side by a Rindler-scale Casimir effect whereas the radiation on the other side is only slightly reduced by a Hubble-scale Casimir effect. This produces an imbalance in the radiation pressure on the object, and a net force that always opposes acceleration, like inertia. A formula for inertia is derived, and an experimental test is suggested. Copyright (C) EPLA, 2013

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available