4.4 Article

The effect of internal and global modes on the radial distribution function of confined semiflexible polymers

Journal

EPL
Volume 91, Issue 3, Pages -

Publisher

EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY
DOI: 10.1209/0295-5075/91/38004

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [FR 850/8-1]

Ask authors/readers for more resources

The constraints imposed by nano- and microscale confinement on the conformational degrees of freedom of thermally fluctuating biopolymers are utilized in contemporary nano- devices to specifically elongate and manipulate single chains. A thorough theoretical understanding and quantification of the statistical conformations of confined polymer chains is thus a central concern in polymer physics. We present an analytical calculation of the radial distribution function of harmonically confined semiflexible polymers in the weakly bending limit. Special emphasis has been put on a proper treatment of global modes, i.e. the possibility of the chain to perform global movements within the channel. We show that the effect of these global modes significantly impacts the chain statistics in cases of weak and intermediate confinement. Comparing our analytical model to numerical data from Monte Carlo simulations we find excellent agreement over a broad range of parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available