4.5 Article

Inhibitory effects of atrazine on Chlorella vulgaris as assessed by real-time polymerase chain reaction

Journal

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
Volume 27, Issue 1, Pages 182-187

Publisher

WILEY
DOI: 10.1897/07-163.1

Keywords

Chlorella vulgaris; atrazine; real-time polymerase chain reaction; enzyme assay

Ask authors/readers for more resources

Atrazine, a highly toxic herbicide, is frequently detected in surface water because of its heavy application. Algae are among the aquatic organisms most susceptible to atrazine pollution in water. In the present study, the aquatic alga Chlorella vulgaris Beijerinck was chosen to assess the acute toxicity of atrazine (48-96 h) in terms of gene transcription and physiological changes. A real-time polymerase chain reaction (PCR) assay was used to quantify transcript levels of three photosystem genes in C. vulgaris. The diel patterns for regulation of the psaB (photosystem I reaction center protein subunit B), psbC (an integral membrane protein component of photosystem 11), and rbcL (large subunit of ribulose-1,5-bisphosphate carboxylase oxygenase) gene transcripts were successfully quantified. Results showed that atrazine reduced the transcript abundances of three target genes and that the abundances decreased with increasing atrazine concentration. The determined smallest transcript levels of psaB, psbC, and rbcL, which occurred at the highest atrazine concentration tested (400 mu g/L), were only 34.6, 34.6, and 8.1 %, respectively, of the control sample value. Exposure to atrazine increased the level of malondialdehyde by 1.74-fold (the highest value) in C. vulgaris, suggesting potential oxidative damage to the alga. The activities of antioxidation enzymes (e.g., superoxide dismutase, peroxidase, and catalase) also increased markedly in the presence of atrazine, with maximum increases of 1.82-, 1.59-, and 2.31-fold, respectively. These elevated activities may help to alleviate the oxidative damage. Our results demonstrate that atrazine is highly toxic to this alga and that real-time PCR is an efficient technique for assessing the toxicity of xenobiotic compounds in algae.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available