4.4 Article

Estimating the removal efficiency of refractory dissolved organic matter in wastewater treatment plants using a fluorescence technique

Journal

ENVIRONMENTAL TECHNOLOGY
Volume 32, Issue 16, Pages 1843-1850

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/09593330.2011.565078

Keywords

Refractory dissolved organic matter; fluorescence; wastewater treatment; removal efficiency; specific UV absorbance

Funding

  1. Korea Research Foundation [2009-0058569]
  2. Government of Korea
  3. Han River Watershed Management Fund

Ask authors/readers for more resources

The spectroscopic characteristics and relative distribution of refractory dissolved organic matter (R-DOM) in sewage have been investigated using the influent and the effluent samples collected from 15 large-scale biological wastewater treatment plants (WWTPs). Correlation between the characteristics of the influent and the final removal efficiency was also examined. Enhancement of specific ultraviolet absorbance (SUVA) and a higher R-DOM distribution ratio were observed for the effluent DOM compared with the influent DOM. However, the use of conventional rather than advanced biological treatments did not appear to affect either the effluent DOM or the removal efficiency, and there was no statistical significant difference between the two. No consistent trend was observed in the changes in the synchronous fluorescence spectra of the DOM after biological treatment. Irrespective of the treatment option, the removal efficiency of DOM was greater when the influent DOM had a lower SUVA, reduced DOC-normalized humic substance-like fluorescence, and a lower R-DOM distribution. These results suggest that selected characteristics of the influent may provide an indication of DOM removal efficiency in WWTPs. For R-DOM removal efficiency, however, similar characteristics of the influent did not show a negative relationship, and even exhibited a slight positive correlation, suggesting that the presence of refractory organic carbon structures in the influent sewage may stimulate microbial activity and inhibit the production of R-DOM during biological treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available