4.4 Article

Effect of low temperature microwave pretreatment on characteristics and mesophilic digestion of primary sludge

Journal

ENVIRONMENTAL TECHNOLOGY
Volume 30, Issue 4, Pages 319-327

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/09593330902732002

Keywords

mesophilic anaerobic digestion; sludge disintegration; solubilization; BMP test; primary sludge

Funding

  1. NSERC
  2. BIOCAP Canada and Environmental Waste International Corporation

Ask authors/readers for more resources

The main obstacles existing in the biodegradation of primary sludge are particle de-amalgamation and the degradation-resisting structure of large-size particulate. Microwave irradiation solubilizes primary sludge by interaction of the electromagnetic field with polar particles in the sludge, which leads to a temperature increase in the irradiated sample. The influence of microwave irradiation on the characteristics and biochemical methane potential of microwave-pretreated primary sludge was studied in terms of microwave intensity (40 and 80% of total microwave power), sludge solid concentration (1 to 4% total solids, w/v) and pretreatment temperature achieved (35 to 90 C). Microwave irradiation was found to increase the concentration of soluble chemical oxygen demand in the sludge. The ratio of soluble to total chemical oxygen demand increased from 2.5 to between 6 and 7% for primary sludge with 4% total solids concentration at a pretreatment temperature of 90 C. In biochemical methane potential tests, biogas production rate increased with both pretreatment temperature and sludge total solids concentrations. For primary sludge with 4% total solids concentration pretreated to 90 C, biogas production rate increased by 37% or resulted in a 28% reduction in required digestion time to achieve 85% of the ultimate biogas production. A first-order reaction model showed a constant increase in the biogas production rate coefficient with the increase in microwave pretreatment temperature. Microwave intensity in the range of pretreatment temperatures studied (35 to 90 C) presented no obvious impact on primary sludge solubilization or anaerobic digestion in terms of ultimate biodegradation efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available