4.7 Article

Pesticide removal from waste spray-tank water by organoclay adsorption after field application to vineyards

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 18, Issue 8, Pages 1374-1383

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-011-0494-4

Keywords

Pesticide; Point source contamination; Depuration; Waste water; Modified clays

Funding

  1. European Project Mitigation of agricultural nonpoint - source pesticide pollution and phytoremediation in artificial wetland ecosystems [LIFE06 ENV/F/000133]

Ask authors/readers for more resources

Purpose The main objective of this work was to develop and test a pilot scheme for decontaminating pesticide-containing water derived from pesticide mixtures used to protect vineyards, in which the scheme comprises adsorption by an organoclay and includes a system where an enhanced or rapid microbial degradation of the adsorbed residues can occur. Methods In laboratory experiments, the Freundlich adsorption coefficients of formulations of two fungicides, penconazole and cyazofamid, onto the organoclay Cloisite 20 A were measured in order to predict the efficiency of this organoclay in removing these fungicides from the waste spray-tank water. Subsequently, the adsorption tests were repeated in the pilot system in order to test the practical operation of the depuration scheme. Results The adsorption tests with the pilot system show 96% removal of both fungicides over a few hours, similar to the efficiency of removal predicted from the laboratory adsorption tests. The formulation type may influence the efficiency of clay recovered after adsorption. Regarding the waste disposal, for instance, the organoclay composted after the treatment, cyazofamid showed significant dissipation after 90 days, whereas the dissipation of penconazole was negligible. Conclusion The depuration scheme developed showed to be efficient for decontaminating pesticide-containing water derived from vineyards, but additional treatments for the adsorbed residues still appear to be necessary for persistent pesticides. However, future decontamination research should be attempted for water contaminated with pesticides containing antifoaming agents in their formulations, in which case the present pilot system could not be applied.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available