4.8 Article

Using Model-Based Screening to Help Discover Unknown Environmental Contaminants

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 48, Issue 13, Pages 7264-7271

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es5010544

Keywords

-

Funding

  1. European Chemical Industry Council Long-Range Research Initiative [ECO13]
  2. Research Council of Norway [196191]

Ask authors/readers for more resources

Of the tens of thousands of chemicals in use, only a small fraction have been analyzed in environmental samples. To effectively identify environmental contaminants, methods to prioritize chemicals for analytical method development are required. We used a high-throughput model of chemical emissions, fate, and bioaccumulation to identify chemicals likely to have high concentrations in specific environmental media, and we prioritized these for target analysis. This model-based screening was applied to 215 organosilicon chemicals culled from industrial chemical production statistics. The model-based screening prioritized several recognized organosilicon contaminants and generated hypotheses leading to the selection of three chemicals that have not previously been identified as potential environmental contaminants for target analysis. Trace analytical methods were developed, and the chemicals were analyzed in air, sewage sludge, and sediment. All three substances were found to be environmental contaminants. Phenyl-tris(trimethylsiloxy)silane was present in all samples analyzed, with concentrations of similar to 50 pg m(-3) in Stockholm air and similar to 0.5 ng g(-1) dw in sediment from the Stockholm archipelago. Tris(trifluoropropyl)trimethyl-cyclotrisiloxane and tetrakis(trifluoropropyl)tetramethyl-cyclotetrasiloxane were found in sediments from Lake Mjosa at similar to 1 ng g(-1) dw. The discovery of three novel environmental contaminants shows that models can be useful for prioritizing chemicals for exploratory assessment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available