4.8 Article

Regulation of Electrochemically Generated Ferrous Ions from an Iron Cathode for Pd-Catalytic Transformation of MTBE in Groundwater

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 47, Issue 14, Pages 7918-7926

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es401730s

Keywords

-

Funding

  1. Natural Science Foundation of China (NSFC) [41172220]
  2. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences [GBL11204]

Ask authors/readers for more resources

A novel Pd-based electro-Fenton (E-Fenton) process has recently been developed to transform organic contaminants in groundwater. However, it only produces H2O2 and requires addition of Fe2+. In this study, an innovative approach is developed to effectively regulate the generation of Fe2+ from an iron cathode in a three-electrode system in addition to H2O2 production. The Fe2+ is then used for the Pd-catalytic transformation of methyl tert-butyl ether (MTBE) in groundwater. Results from batch experiments suggest Fe2+ accumulation follows pseudo-first-order kinetics with rate quantitatively regulated by current and pH, and MTBE can be completely transformed. In a specially configured three-electrode column using iron as the first cathode, the localized acidic conditions develop automatically in the iron cathode and Pd zone by partitioning the current between the two cathodes, leading to controllable generation of Fe2+ and H2O2. Effects of electrolyte concentrations and types as well as humic acid on MTBE transformation are slight. The stable transformation (similar to 70%) in a long-term study (20 days) suggests this improved Pd-based E-Fenton process is sustainable to produce Fe2+, H2O2, and appropriate pH conditions simultaneously for transforming organic contaminants. This study presents a new concept of generating Fe2+ from an iron cathode for the processes requiring Fe2+.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available