4.8 Article

Probing the Primary Mechanisms Affecting the Environmental Distribution of Estrogen and Androgen Isomers

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 45, Issue 9, Pages 3989-3995

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es200073h

Keywords

-

Funding

  1. USEPA [RD833417]
  2. National Science Foundation of China [NSFC 20877014]
  3. China Scholarship Council

Ask authors/readers for more resources

Land application of animal manure has been identified as a source of natural and synthetic hormone contaminants that are frequently detected down-gradient of agricultural operations. Much research on the environmental fate of hormones has focused on the structural isomers most biologically active in mammals, e.g., the 17 beta-isomers of the estrogen estradiol (E2) and the synthetic androgen trenbolone (TB). However, recent work has shown that the alpha- and beta-isomers of E2 and TB can cause comparable effects on certain aquatic species. To improve our understanding and ability to predict isomer-specific interactions with environmental sorbents, we measured the association (K(DOC)) of the alpha- and beta-isomers of E2 and TB as well as their primary metabolites (estrone and trendione) with two commercial dissolved organic carbon (DOC) sources by measuring both free and DOC-bound hormone concentrations. We also measured solvent-water partition coefficients partitioning (K(SW)) for the same hormones using hexane, toluene, and octanol. Log K(DOC) log.K(OC) (OC-normalized sorption by soils), and K(OW) values are all greater for the beta-isomer except between the E2 isomers. Theoretical descriptors reflecting electronic character and solute-solvent interactions were calculated to elucidate isomer-specific behavior. Trends for log K(OW) and log K(DOC) among hormones as well as between isomers are explained reasonably well by computed electrostatic potential and H-bonding parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available