4.6 Article

Mannitol-1-phosphate dehydrogenases/phosphatases: a family of novel bifunctional enzymes for bacterial adaptation to osmotic stress

Journal

ENVIRONMENTAL MICROBIOLOGY
Volume 17, Issue 3, Pages 711-719

Publisher

WILEY
DOI: 10.1111/1462-2920.12503

Keywords

-

Categories

Funding

  1. Deutsche Forschungsgemeinschaft
  2. start-up grant (FIMS) from the Goethe University, Frankfurt
  3. Spanish Ministry of Science and Innovation [CSD2008-00077, CTM2010-20361]
  4. Div Of Molecular and Cellular Bioscience
  5. Direct For Biological Sciences [1153413] Funding Source: National Science Foundation

Ask authors/readers for more resources

The nutritionally versatile soil bacterium Acinetobacter baylyiADP1 copes with salt stress by the accumulation of compatible solutes, a strategy that is widespread in nature. This bacterium synthesizes the sugar alcohol mannitol de novo in response to osmotic stress. In a previous study, we identified MtlD, a mannitol-1-phosphate dehydrogenase, which is essential for mannitol biosynthesis and which catalyses the first step in mannitol biosynthesis, the reduction of fructose-6-phosphate (F-6-P) to the intermediate mannitol-1-phosphate (Mtl-1-P). Until now, the identity of the second enzyme, the phosphatase that catalyses the dephosphorylation of Mtl-1-P to mannitol, was elusive. Here we show that MtlD has a unique sequence among known mannitol-1-phosphate dehydrogenases with a haloacid dehalogenase (HAD)-like phosphatase domain at the N-terminus. This domain is indeed shown to have a phosphatase activity. Phosphatase activity is strictly Mg2+ dependent. Nuclear magnetic resonance analysis revealed that purified MtlD catalyses not only reduction of F-6-P but also dephosphorylation of Mtl-1-P. MtlD of A.baylyi is the first bifunctional enzyme of mannitol biosynthesis that combines Mtl-1-P dehydrogenase and phosphatase activities in a single polypeptide chain. Bioinformatic analysis revealed that the bifunctional enzyme is widespread among Acinetobacter strains but only rarely present in other phylogenetic tribes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available