4.6 Article

Phylogenetic diversity of cyanobacterial narB genes from various marine habitats

Journal

ENVIRONMENTAL MICROBIOLOGY
Volume 10, Issue 12, Pages 3377-3387

Publisher

WILEY
DOI: 10.1111/j.1462-2920.2008.01741.x

Keywords

-

Categories

Funding

  1. National Science Foundation [OCE-0425363, OCE 0425583]
  2. Rhode Island EPSCoR
  3. The University of Rhode Island Council
  4. NSF
  5. Gordon and Betty Moore Foundation

Ask authors/readers for more resources

Nitrate, the most abundant combined, dissolved form of inorganic nitrogen in global oceans, is a common source of nitrogen (N) for phytoplankton including cyanobacteria. Using a nested polymerase chain reaction (PCR) method, the diversity of the cyanobacterial nitrate reductase gene, narB, was examined in plankton samples from a variety of marine habitats. A total of 480 narB gene fragment sequences were obtained from a coastal coral reef (Heron Island, Australia), open-ocean tropical and subtropical oceanic waters (Atlantic and Pacific Oceans) and a temperate N. Pacific Ocean site (34 degrees N, 129 degrees W). Phylogenetic analyses distinguished eight picocyanobacterial narB clades comprised of DNA sequences derived from the nutrient-replete coastal, nutrient-deplete pelagic and tidally influenced coral reef habitats. The phylogeny of recovered narB gene sequences was consistent with 16S rRNA and ITS sequence phylogenies, suggesting minimal horizontal gene transfer of the narB gene. Depending on sampled habitat, environmental narB sequence types segregated into three divisions: non-picocyanobacterial, coastal picocyanobacterial and open-ocean picocyanobacterial sequences. Using a reverse transcription PCR method, narB mRNA sequences were amplified from Heron Island samples, indicating that narB expression can be detected in environmental samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available