4.7 Article

Monitoring rapid head scarp movement in an alpine rockslide

Journal

ENGINEERING GEOLOGY
Volume 115, Issue 1-2, Pages 49-57

Publisher

ELSEVIER
DOI: 10.1016/j.enggeo.2010.06.014

Keywords

Rockslide; Tension cracks; Gravitational deformation; Monitoring; Surface movement; Seasonal frost

Funding

  1. Fukada Geological Institute
  2. Japan Society for the Promotion of Science [17300294]
  3. Grants-in-Aid for Scientific Research [17300294] Funding Source: KAKEN

Ask authors/readers for more resources

The Aresawa rockslide in the Japanese Alps, which partially collapsed in May 2004, produced a number of new tension cracks in the head area. This paper discusses the dynamics of the rock slope and controls on the surface velocity, based on the results of on-site monitoring of the surface movement and meteorological parameters (air and ground surface temperatures, precipitation and snow depth). The rock mass deformation progressed at ca. 60 cm yr(-1) mainly along a slip plane dipping downslope at ca. 50 degrees. The surface velocity of the slipping rock mass showed a significant seasonal variation in response to the water infiltration. The velocity was small (<= 1 mm day(-1)) in winter. Subzero air temperatures and a heat-insulating snow cover, and resulting growth of seasonal frost, prevent water infiltration into the bedrock and contribute to the rock slope stability. Most of the movement in this period is attributed to gravitational deformation originating from the overburden pressure. In contrast, the surface velocity increased (up to 10 mm day(-1)) during snow-melting and snow-free periods. Snowmelt and rainfalls promote water infiltration into the bedrock, destabilizing the rock slope and accelerating the rock slip. Such a rapid movement is attributed to water-induced sliding superimposed on gravitational deformation. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available