4.7 Article

Analytical stress intensity factor solutions for resistance and friction stir spot welds in lap-shear specimens of different materials and thicknesses

Journal

ENGINEERING FRACTURE MECHANICS
Volume 77, Issue 14, Pages 2611-2639

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfracmech.2010.06.022

Keywords

Resistance spot weld; Spot friction weld; Friction stir spot weld; Gap; Bend; Lap-shear specimen; Stress intensity factor; J integral

Categories

Funding

  1. National Science Foundation [DMI-0456755]

Ask authors/readers for more resources

In this paper, analytical stress intensity factor and J integral solutions for resistance and friction stir spot welds without and with gap and bend in lap-shear specimens of different materials and thicknesses are developed. The J integral and stress intensity factor solutions for spot welds are first presented in terms of the structural stresses for a strip model. Analytical structural stress solutions for spot welds without and with gap and bend in lap-shear specimens are then developed based on the closed-form structural stress solutions for a rigid inclusion in a finite thin plate subjected to various loading conditions. With the available structural stress solutions, the analytical J integral and stress intensity factor solutions can be obtained as functions of the applied load, the elastic material property parameters, and the geometric parameters of the weld and specimen. The analytical stress intensity factor solutions are selectively validated by the results of three-dimensional finite element analyses for a spot weld with ideal geometry and for a friction stir spot weld with complex geometry, gap and bend. The stress intensity factor and J integral solutions at the critical locations of spot welds in lap-shear specimens of dissimilar magnesium, aluminum and steel sheets with equal and different thicknesses are then presented in the normalized forms as functions of the ratio of the specimen width to the weld diameter. Finally, general trends and simple estimation methods of the stress intensity factor and J integral solutions at the critical locations of spot welds in lap-shear specimens of different materials and thicknesses are given for convenient engineering applications. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available