4.7 Article

A criterion for brittle fracture in U-notched components under mixed mode loading

Journal

ENGINEERING FRACTURE MECHANICS
Volume 76, Issue 12, Pages 1883-1896

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfracmech.2009.04.008

Keywords

Brittle fracture; U-notch; Mixed mode loading; UMTS criterion; Notch stress intensity factor

Categories

Ask authors/readers for more resources

A failure criterion is proposed for brittle fracture in U-notched components under mixed-mode static loading. The criterion, called UNITS, is developed based on the maximum tangential stress criterion and also a criterion proposed in the past for mode I failure of rounded V-shaped notches [Gomez FJ, Elices M. A fracture criterion for blunted V-notched samples. Int J Fracture 2004;127:239-64]. Using the UMTS criterion, a set of fracture curves are derived in terms of the notch stress intensity factors. These curves can be used to predict the mixed mode fracture toughness and the crack initiation angle at the notch tip. An expression is also obtained from this criterion for predicting fracture toughness of U-notched components in pure mode II loading. It is shown that there is a good agreement: between the results of LIMITS criterion and the experimental data obtained by other authors from three-point bend specimens. (C) 2009 Elsevier Ltd. All rights reserved,

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Materials Science, Multidisciplinary

An analytical stress field for bi-material V-notches with end hole: New solution and effects of higher order terms

Seyed Karen Alavi, Majid R. Ayatollahi, Bahador Bahrami, Morteza Nejati

Summary: This study presents an analytical stress solution for bi-material V-notches with an end hole. The stress field is derived as an asymptotic series solution using the Kolosov-Muskhelishvili approach, with the constant coefficients computed using the least square method. The accuracy of the solution is verified through benchmarking with finite element method results.

MATHEMATICS AND MECHANICS OF SOLIDS (2023)

Article Engineering, Mechanical

Effect of friction at the supports of semi-circular bending tests on fracture mode of loading

M. Bakhshizadeh, S. Pirmohammad, M. R. Ayatollahi

Summary: This paper investigates the impact of supports on fracture mode of loading using semicircular bending specimen through finite element analysis and experiments. The results show that parameters like support type and crack angle can influence the values of geometry factors, and the friction coefficient can significantly change the loading mode at the crack tip.

THEORETICAL AND APPLIED FRACTURE MECHANICS (2022)

Article Engineering, Mechanical

In-situ optical approach to predict mixed mode fracture in a polymeric biomaterial

Saeid Ghouli, Majid R. Ayatollahi, Bahador Bahrami, Jamaloddin Jamali

Summary: This article promotes the usage of digital image correlation (DIC) technique for determining in-situ stress and predicting fracture in cracked dental biomaterial samples. The elastic and fracture properties of the dental material are measured using DIC method, and a modified single edge notched bend (SENB) specimen with varying crack length is utilized for mixed mode fracture experiments. A stress-based fracture criterion is implemented and combined with two different critical distance models. In-situ stress is calculated using DIC analysis data and supervised learning algorithm, and the crack growth angle and fracture load for the tested biomaterial specimens are estimated, showing good correlation with experimental measurements.

THEORETICAL AND APPLIED FRACTURE MECHANICS (2022)

Article Materials Science, Multidisciplinary

Mixed-mode fracture prediction of acrylonitrile butadiene styrene material fabricated via fused deposition modeling

S. M. Javad Razavi, Amir Nabavi-Kivi, Majid R. Ayatollahi

Summary: Fused deposition modeling is an additive manufacturing technique used for rapid manufacturing and prototyping. However, the layer-wise fabrication process often leads to anisotropic behavior in the final products. This research aims to determine whether the isotropic assumption of material using maximum tangential stress and mean stress criteria can predict the mixed-mode fracture resistance of 3D-printed parts. The results show that both criteria can accurately predict the fracture loads of the fused deposition modeling parts.

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS (2023)

Article Engineering, Mechanical

Heat treatment effects on fracture resistance of additively manufactured PLA specimens under mode I loading

Majid R. R. Ayatollahi, Parham Rezaeian, Amir Nabavi-Kivi, Mohammad Reza Khosravani

Summary: This study investigates the effect of heat treatment on the tensile, flexural, and fracture strength of PLA specimens made by the FDM technique. Annealing at different temperatures (80℃, 100℃, 120℃) was conducted on dog bone and ECT specimens to evaluate the mechanical and fracture performance of the FDM-PLA parts. Fracture behavior was assessed using EMC, J-integral, ASED, and MTS criteria, and compared with experimental results. Heat treatment significantly improved the structural integrity of FDM specimens, with a 57% increase in fracture resistance.

FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES (2023)

Article Chemistry, Physical

Impact Fatigue Life of Adhesively Bonded Composite-Steel Joints Enhanced with the Bi-Adhesive Technique

Alireza Akhavan-Safar, Ghasem Eisaabadi Bozchaloei, Shahin Jalali, Reza Beygi, Majid R. Ayatollahi, Lucas F. M. da Silva

Summary: Repeated impact is a common loading condition for bonded joints. However, the behavior of metal-composite bonded joints under repeated impact loads has not been widely studied. This study proposes the use of bi-adhesive technique to improve the durability of composite-metal joints under impact fatigue. Experimental and numerical analyses reveal that the double adhesives technique significantly enhances the impact fatigue life of the joints.

MATERIALS (2023)

Article Mechanics

Investigating the effect of raster orientation on fracture behavior of 3D-printed ABS specimens under tension-tear loading

A. Nabavi-Kivi, Majid R. Ayatollahi, Nima Razavi

Summary: This study investigates the fracture behavior of FDM specimens made of ABS under mixed-mode I/III loading conditions. Four different raster configurations and five loading angles were used, and the failure loads were predicted using the Equivalent Material Concept coupled with J-integral and Maximum Tangential Stress criteria. Both criteria were able to accurately predict the experimental failure loads, and SEM analysis confirmed the presence of three failure features.

EUROPEAN JOURNAL OF MECHANICS A-SOLIDS (2023)

Article Engineering, Mechanical

A new strategy for predicting fracture of U-notched specimens made of Al-6061-T6 and Al-5083 using extended finite element method

Pedram Bagheri, Ali Reza Torabi, Bahador Bahrami

Summary: This research focuses on the numerical investigation of fracture loads of U-notched specimens made of Al-6061-T6 and Al-5083 under pure opening mode and mixed mode I/II loading conditions. A new methodology is introduced to assess the notch fracture loads and crack growth path using the combination of the equivalent material concept (EMC) and extended finite element method (XFEM). The results are compared with a conventional elastic-plastic damage model, and the EMC-XFEM model is found to be more efficient and accurate in predicting fracture of ductile aluminum notches.

FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES (2023)

Article Engineering, Mechanical

A novel test specimen for mixed mode I/II/III fracture study in brittle materials

Reza Jalayer, Behnam Saboori, Majid Reza Ayatollahi

Summary: A new test specimen is proposed for investigating mixed mode I/II/III fracture of materials. This test specimen creates mixed mode I/III loading conditions by displacing the position of an inclined crack from the middle of the rectangular specimen, in addition to mode II loading under anti-symmetric four-point bending. The experimental fracture loads of PMMA specimens are compared with theoretical predictions, showing satisfactory consistency.

FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES (2023)

Article Engineering, Mechanical

Artificial neural network in prediction of mixed-mode I/II fracture load

Bahador Bahrami, Hossein Talebi, Majid R. Ayatollahi, Mohammad Reza Khosravani

Summary: This research demonstrates the application of artificial neural network (ANN) in predicting fracture under mixed-mode I/II loadings. By analyzing the importance of different input factors, crack parameters and material properties are selected as input data. Multiple ANN models are trained and optimized using different algorithms. The optimized models show low errors and high accuracy in predicting fracture, indicating the effectiveness and potential wide range application of data-driven fracture predictions compared to traditional physics-based criteria.

INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES (2023)

Article Materials Science, Composites

Cyclic aging analysis of CFRP and GFRP composite laminates

Mostafa Moazzami, M. R. Ayatollahi, Alireza Akhavan-Safar, Sofia Teixeira de Freitas, Lucas F. M. da Silva

Summary: Moisture diffusion occurs in composite laminates when exposed to humidity, leading to a reduction in their mechanical properties, especially flexural stiffness, which is important in design. This research investigates the mechanical properties of CFRP and GFRP composites as a substrate in adhesive joints under cyclic wet/dry aging conditions for long-term structural applications. The results show that the reduction in flexural stiffness is more severe in CFRP laminates compared to GFRP laminates, indicating the suitability of GFRP laminates for ocean applications.

JOURNAL OF COMPOSITE MATERIALS (2023)

Article Engineering, Civil

On the asymmetric dynamic response of viscoelastic sector plate made of FG polymer foam

S. Karen Alavi, Majid R. Ayatollahi, Mohd Yazid Yahya, S. S. R. Koloor

Summary: This work presents an analytical investigation of the damped forced vibration behavior of viscoelastic annular sector plates made of porous polymer foam. The motion equations are derived using the first-order shear deformation theory (FSDT) in conjunction with the energy method and calculus of variations. Three types of pore distribution in the plate thickness are explored, and the obtained relations are extended to constitutive equations using the standard linear solid (SLS) viscoelastic model. The system of equations with variable coefficients is solved using perturbation technique and Fourier series, and the asymmetrically dynamic response is computed analytically in a closed-form solution. Transient dynamic behavior of viscoelastic functionally graded porous (VFGP) annular sector plates is then analyzed for various loadings, and a user-defined field code is developed for reliability evaluation.

THIN-WALLED STRUCTURES (2023)

Article Chemistry, Physical

Fracture Behavior of AA7075-AA6061 and AA7075-Cu Friction-Stir Welded Joints Containing Blunt V-Notches under Opening-Mode Loading

Ali Reza Torabi, Moslem Mirzavand, Behnam Saboori, Sergio Cicero

Summary: The purpose of this study is to predict the load-bearing capacity of fracture specimens containing V-notched friction-stir welded joints. Elastic-plastic fracture criteria are complex and time-consuming for the fracture analysis of FSWed alloys. In this study, the equivalent material concept (EMC) is applied, and two brittle fracture criteria are utilized to accurately predict the load-bearing capacity.

MATERIALS (2023)

Article Polymer Science

VO-Notches Subjected to Tension-Torsion Loading: Experimental and Theoretical Fracture Study on Polymeric Samples

Hossein Talebi, Mohsen Askari, Majid Reza Ayatollahi, Sergio Cicero

Summary: The research investigates the fracture behavior of brittle specimens weakened by V-shaped notches with end holes (VO-notches). Experimental investigation is conducted, and it is found that the size of the notch end-hole has an effect on the fracture resistance. Two stress-based criteria, the maximum tangential stress (MTS) criterion and the mean stress (MS) criterion, are developed for VO-shaped notches under mixed-mode I/III loading, and they accurately predict the fracture resistance of VO-notched samples with about 92% and 90% accuracy, respectively.

POLYMERS (2023)

Article Engineering, Chemical

Effects of low cycle impact fatigue on the residual mode II fracture energy of adhesively bonded joints

A. Akhavan-Safar, Sh. Jalali, L. F. M. da Silva, M. R. Ayatollahi

Summary: Cyclic loading significantly affects the durability of adhesively bonded joints, especially under cyclic impact loads. Low-energy cyclic impacts decrease the fracture energy of the joints, challenging the assumption of infinite life under cyclic impacts. The stress concentration caused by cyclic impact stress waves leads to a higher density of cracks at the specimen edges. Comprehensive inspections for bonded structures exposed to low-energy cyclic impacts are important to maintain joint strength and safe design and inspection practices.

INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES (2023)

Article Mechanics

Formation mechanism of zig-zag crack region on the shattered rim of railway wheel

Xiaolong Liu, Kelian Luo, Pengcheng Gao, Tao Cong, Xi Wang, Wenjing Wang

Summary: This paper investigates the formation mechanisms of the zig-zag crack region on the shattered rim of railway wheels. The zig-zag crack region, identified as a typical region for crack propagation in rolling contact fatigue behavior, was observed using scanning electron microscopy and transmission electron microscopy. The formation of the zig-zag morphology is attributed to the periodic deflection of the propagation path relative to the initial propagation plane, caused by the limited plastic deformation zone at the crack tip. Grain refinement and secondary cracks in the zig-zag crack region are a result of the large compressive and shear stresses induced by rolling contact loading.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

Structural, thermal and acoustic aspects of crack propagation in titanium alloys

Anastasia Iziumova, Aleksei Vshivkov, Ivan Panteleev, Virginia Mubassarova, Oleg Plekhov, Denis Davydov

Summary: The aim of this study was to investigate the correlation between structural, acoustic emission, and thermal characteristics of fatigue crack growth in titanium alloys. Cluster analysis of the acoustic emission signals revealed two different types of signals observed during the fatigue crack development. It was experimentally demonstrated that the stored energy tends to reach an asymptotic value at the final stage of fatigue crack growth and this is correlated with the twinning process intensification in titanium alloy Ti Grade 2. A correlation was assumed between the stages of change in heat flux, the cumulative energy of the first cluster of acoustic emission signals, and the crack length.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

On the solution of unstable fracture problems with non-linear cohesive laws

M. Vieira de Carvalho, I. A. Rodrigues Lopes, F. M. Andrade Pires

Summary: This study investigates the numerical challenges of fracture mechanics models within implicit quasi-static frameworks and proposes an instability criterion. The ratio of cohesive to internal power is identified as a crucial factor. Two strategies for handling fracture problems with instabilities are discussed and a comparative assessment is performed. The study also examines more complex material responses, including transformation-induced plasticity effects.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

Fracture parameter identification by Digital Image Correlation and Finite Fracture Mechanics for millimeter-scale samples

Thomas Duminy, Aurelien Doitrand, Sylvain Meille

Summary: This study conducted in situ wedge splitting tests on millimeter-size PMMA samples and proposed a method to determine the material tensile strength and critical energy release rate using digital image correlation and a full finite element implementation of the coupled criterion.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

Experimental investigation on mode I fracture characteristics of Longmaxi formation shale after cyclic thermal shock and high-temperature acid etching treatments

Xin Chang, Xingyi Wang, Chunhe Yang, Yintong Guo, Yanghui Wan

Summary: The influence of cyclic thermal shock and high-temperature acid etching on the Mode I fracture of shale was investigated in this study. It was found that cyclic thermal shock severely degrades the strength and fracture toughness of shale, while high-temperature acid etching treatment improves the fracture toughness. These findings are valuable for optimizing process parameters to reduce initiation pressure in deep shale formations.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

A proposal for similitude in characterizing fatigue delamination behavior with fibre bridging of carbon-fibre reinforced polymer composites

Liaojun Yao, Mingyue Chuai, Zhangming Lyu, Xiangming Chen, Licheng Guo, R. C. Alderliesten

Summary: Methods based on fracture mechanics have been widely used in fatigue delamination growth (FDG) characterization of composite laminates. This study proposes appropriate similitude parameters to represent FDG behavior with different R-ratios.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

Experimental investigation of the fracture and damage evolution characteristics of flawed coal based on electric potential and acoustic emission parameter analyses

Zesheng Zang, Zhonghui Li, Yue Niu, Shan Yin

Summary: This study conducted experiments and recorded signals to investigate the fracture behavior and damage evolution characteristics of coal samples. The results showed that as loading proceeds, the stress, electric potential (EP), and acoustic emission (AE) values increase, and EP and AE signals are excited when stress drops. The fracture behavior of coal samples is altered by flaw inclination, and the destruction mode becomes increasingly complicated. The damage evolution characteristics of coal samples can be evaluated and analyzed by defining the coefficient of variation (CV value) of EP and the b value of AE.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

Mechanical strength of different zirconia thin films in relation with their thickness

Clotilde Berdin, Nathalie Prud'homme

Summary: In this study, zirconia layers with different fractions of tetragonal phase and thicknesses were tested for multi-cracking behavior. Cracks perpendicular to the tensile direction were observed, showing a blunting effect into the substrate. The ratio of crack spacing at saturation to layer thickness decreased as the layer thickness increased. Unit cell modeling was used to establish a relationship between crack spacing and layer strength, which fell within the bounds of Hu and Evans model and was found to be insensitive to the tetragonal zirconia fraction.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

Modified Williams' crack tip solution including crack face pressure

Huadong Zhang, Weichen Kong, Y. H. Liu, Yuh J. Chao

Summary: Williams' series expansion crack tip solution in linear elasticity is modified to include a uniform crack face pressure. Practical methods to calculate T-stress from near crack tip stresses are outlined. The analytical results are consistent with numerical results.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

Phase field study on fracture behavior of crushable polymer foam

Jiahao Kong, Haoyue Han, Tao Wang, Guangyan Huang, Zhuo Zhuang

Summary: This paper introduces a phase-field model for polymer foam materials by combining the phase-field method with the crushable foam model. The model is calibrated using experimental data and successfully simulates the fracture processes of polyurethane under different loading conditions. The study is important for the engineering applications of polymer foam materials.

ENGINEERING FRACTURE MECHANICS (2024)