4.8 Article

Three-dimensionally scaffolded Co3O4 nanosheet anodes with high rate performance

Journal

JOURNAL OF POWER SOURCES
Volume 299, Issue -, Pages 40-48

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2015.08.078

Keywords

Mesostructured electrode; Anode; Secondary battery; High power; Nanostructure

Funding

  1. U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-FG02-07ER46471]
  2. State Key Project of Fundamental Research for Nanoscience and Nanotechnology of China [2011CB933700]
  3. One Hundred Person Project of the Chinese Academy of Sciences

Ask authors/readers for more resources

Advances in secondary batteries are required for realization of many technologies. In particular, there remains a need for stable higher energy batteries. Here we suggest a new anode concept consisting of an ultrathin Co3O4 nanosheet-coated Ni inverse opal which provides high charge-discharge rate performance using a material system with potential for high energy densities. Via a hydrothermal process, about 4 nm thick Co3O4 nanosheets were grown throughout a three-dimensional Ni scaffold. This architecture provides efficient pathways for both lithium and electron transfer, enabling high charge discharge rate performance. The scaffold also accommodates volume changes during cycling, which serves to reduce capacity fade. Because the scaffold has a low electrical resistance, and is three-dimensionally porous, it enables most of the electrochemically active nanomaterials to take part in lithiation delithiation reactions, resulting in a near-theoretical capacity. On a Co3O4 basis, the Ni@Co3O4 electrode possesses a capacity of about 726 mAh g(-1) at a current density of 500 mA g(-1) after 50 cycles, which is about twice the theoretical capacity of graphite. The capacity is 487 mAh r1, even at a current density of 1786 mA g(-1). (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available