4.7 Article Proceedings Paper

Analysis of the Impact of Selected Fuel Thermochemical Properties on Internal Combustion Engine Efficiency

Journal

ENERGY & FUELS
Volume 26, Issue 5, Pages 2798-2810

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ef2019879

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-AC05-00OR22725]
  2. UT-Battelle, LLC.

Ask authors/readers for more resources

In this study we model the effects of 23 different fuels on First and Second Law thermodynamic efficiencies of an adiabatic internal combustion engine. First Law efficiency is calculated using the lower heating value (LHV), while Second Law efficiency is calculated with exergy, which represents the inherent chemical energy available to perform work. We find that First Law efficiency can deviate by as much as 9% between fuels while Second Law efficiency exhibits a much smaller degree of variability. We also find that First and Second Law efficiencies can be nearly the same for some fuels (methane and ethane) but differ substantially for other fuels (hydrogen and ethanol). The differences in First and Second Law efficiencies are due to differences in LHV and exergy for a given fuel. In order to clarify First Law efficiency differences between fuels, as well as the differences between LHV and exergy, we introduce a new term, the molar expansion ratio (MER), defined as the ratio of product moles to reactant moles for complete stoichiometric combustion. We find that the ME R reflects an important part of the physics behind fuel-specific efficiency differences as well as differences between First and Second Law efficiencies. We also discuss how First and Second Law efficiencies are affected by two other fuel-specific thermochemical properties, the ratio of specific heat and extent of dissociation in the reaction products following combustion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available