4.7 Article

Eulerian Model for Municipal Solid Waste Gasification in a Fixed-Bed Plasma Gasification Melting Reactor

Journal

ENERGY & FUELS
Volume 25, Issue 9, Pages 4129-4137

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ef200383j

Keywords

-

Ask authors/readers for more resources

Plasma gasification melting (PGM) is a promising waste-to-energy process, which provides many features superior to those of conventional gasification. In this work, a steady Euler Euler multiphase model is developed to predict the performance of municipal solid waste (MSW) gasification inside a PGM reactor. The model considers the main chemical and physical processes, such as drying, pyrolysis, homogeneous reactions, heterogeneous char reactions, and melting of the inorganic components of MSW. The model is validated by one experimental test of a pilot reactor. The characteristics of PGM gasification, such as temperature distribution, syngas composition, tar yield, and energy conversion ratio (ECR, chemical energy of the gas phase divided by the total energy input), at the proposed condition are discussed. A total of nine cases are used to investigate the effects of the equivalence ratio (ER) and plasma power with a fixed flow rate of MSW. It is found that the ER has a positive effect on the cold gas efficiency of PGM gasification. However, the increase of the ER is restricted by the peak temperature. The influence of the plasma power then is not obvious for PGM gasification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available