4.8 Article

A droplet-based screen for wavelength-dependent lipid production in algae

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 7, Issue 7, Pages 2366-2375

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ee01123f

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council(NSERC)
  2. Ontario
  3. NSERC
  4. Canadian Institutes of Health Research (CIHR)

Ask authors/readers for more resources

We report a digital microfluidic system designed for droplet-based long-term culture and analysis of algae. The system includes unique innovations relative to standard devices including an active reservoir structure to maintain homogeneous cell density, a customized device layout capable of controlling a wide range of different droplet volumes, vertical interconnects to collect spent reagents, detection zones compatible with parallel-scale optical measurements using a standard multiwell plate reader, and optimized features for droplet dispensing in parallel. The method allows for automated, multiplexed analysis with significant reductions in human intervention, representing a decrease from 600 pipette steps (for a conventional screen in multiwell plates) to fewer than 20 (for the new microfluidic technique). The system was applied to screen conditions favourable for lipid generation in the widely used algal model for biofuel production, Cyclotella cryptica. A dependence on illumination wavelength was observed, with the best conditions (representing a four-fold increase relative to control) comprising an alternation between yellow (similar to 580 nm) and blue (similar to 450 nm) illumination wavelengths. These effects were observed for both micro- and macro-scale cultures, and are consistent with a putative mechanism involving photooxidative stress. We propose that the microfluidic system described here is an attractive new screening tool with potential advantages for applications in renewable energy, biotechnology, materials science, and beyond.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available