4.7 Article

Experiment research of solar PV/T cogeneration system on the building facade driven by a refrigerant pump

Journal

ENERGY
Volume 161, Issue -, Pages 744-752

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2018.07.189

Keywords

Solar system; Hybrid PV/T module; Vertical facade; Hot water; Experiment research

Funding

  1. National Key Research and Development Project of China [2017YFC0704202]

Ask authors/readers for more resources

Solar energy technology applied to the building has shown a progressive trend in the architecture sector. Building integrated with the photovoltaic thermal system is called BIPV/T system, thus electrical energy is generated by photovoltaic modules and thermal energy is collected through working fluid. This paper presents an opaque ventilated PV/T facade system, which utilized the specific PV/T module as the external skin. A forced circulation with a refrigerant pump was adopted to cool the PV/T module and the coolant was R134a. The experimental research is carried out to evaluate the performance of the cogeneration system under outdoor climatic conditions of Dalian, including useful heat gain, the heating coefficient of performance, photovoltaic efficiency. In addition, thermal impacts on cavity air and solid wall are also analyzed. The results show that such system can reduce the heat flux of building envelope, and the system heating coefficient of performance can reach 3.1, the water temperature in thermal storage tank maximizes to 43.9 degrees C. The average photovoltaic efficiency is about 9% during the test period. Besides, the study shows that it is feasible to mount PV/T cogeneration system on the building facade. Furthermore, the system driven by a refrigerant pump operates stably and safely. (C) 2018 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available