4.7 Article

Artificial neural networks for analysis of process states in fluidized bed combustion

Journal

ENERGY
Volume 36, Issue 1, Pages 339-347

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2010.10.033

Keywords

Fluidized bed; Neural network; Self-organizing map; Multilayer perceptron; Process state

Funding

  1. Finnish Funding Agency for Technology and Innovation (Tekes)

Ask authors/readers for more resources

There are several challenges confronting energy production nowadays, such as increasing the efficiency of combustion processes and at the same time reducing harmful emissions. The latter, however, often necessitates process improvement, which requires knowledge of the behavior of the process. It is therefore important to develop and implement novel methods for process diagnostics that can respond to the challenges of modern-day energy plants. In this study the formation of nitrogen oxides (NOx) in a circulating fluidized bed (CFB) boiler is modeled by using artificial neural networks (ANN). In the approach used, the process data are first arranged using self-organizing maps (SOM) and k-means clustering to create subsets representing the separate process states in the boiler, including load increase and load decrease situations and conditions of high or low boiler load. After the determination of these process states, variable selection based on multilayer perceptrons (MLP) is performed to obtain information on the factors affecting the formation of NOx in those states. The results show that this approach provides a useful way of monitoring a combustion process. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available