4.8 Article

Imaging Charge Transfer State Excitations in Polymer/Fullerene Solar Cells with Time-Resolved Electrostatic Force Microscopy

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 6, Issue 15, Pages 2852-2858

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.5b01360

Keywords

-

Funding

  1. Division Of Materials Research
  2. Direct For Mathematical & Physical Scien [1306079] Funding Source: National Science Foundation

Ask authors/readers for more resources

We demonstrate nanoscale imaging of charge transfer state photoexcitations in polymer/fullerene bulk heterojunction solar cells using time-resolved electrostatic force microscopy (trEFM). We compare local trEFM charging rates and external quantum efficiencies (EQE) for both above-gap and below-gap excitation of the model system poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and [6,6]-phenyl C-61 butyric acid methyl ester (PCBM). We show that the local trEFM charging rate correlates with device EQE for both above-gap and below-gap photoexcitation, demonstrating that EFM methods have sufficient sensitivity to detect the low EQEs associated with CT state formation, a result that could be useful for probing weak subgap excitations in nanostructured materials such as quantum dot and organometal halide perovskite solar cells. Further, we use trEFM to map spatial variations in EQE arising from subgap CT excitation in organic photovoltaics (OPVs) and find that the local distribution of photocurrent arising from these states is nearly identical to the spatial variation in EQE from above-gap singlet excitation. These results are consistent with recent work showing that both above-gap and below-gap excitation have similar internal quantum efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available