4.7 Article

Chronic effects of mercury on Bufo gargarizans larvae: Thyroid disruption, liver damage, oxidative stress and lipid metabolism disorder

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 164, Issue -, Pages 500-509

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2018.08.058

Keywords

Amphibian metamorphosis; Liver; Thyroid gland; Histopathology; Oxidative stress; Lipid metabolism

Funding

  1. National Natural Science Foundation of China [33372201, 31201726]

Ask authors/readers for more resources

Mercury is severely detrimental to organisms and is ubiquitous in both terrestrial and aquatic ecosystems. In the present study, we examined the effects of chronic mercury (Hg) exposure on metamorphosis, body size, thyroid microstructures, liver microstructural and ultrastructural features, and transcript levels of genes associated with lipid metabolism, oxidative stress and thyroid hormones signaling pathways of Chinese toad (Bufo gargarizans) tadpoles. Tadpoles were exposed to mercury concentrations at 0, 6, 12, 18, 24 and 30 mu g/L from Gosner stage 26-42 of metamorphic climax. The present results showed that high dose mercury (24 and 30 mu g/L) decelerated metamorphosis rate and inhibited body size of B. gargarizans larvae. Histological examinations have clearly exhibited that high mercury concentrations caused thyroid gland and liver damages. Moreover, degeneration and disintegration of hepatocytes, mitochondrial vacuolation, and endoplasmic reticulum breakdown were visible in the ultrastructure of liver after high dose mercury treatment. Furthermore, the larvae exposed to high dose mercury demonstrated a significant decrease in type II iodothyronine deiodinase (Dio2) and thyroid hormone receptor a and beta (TR alpha and TR beta) mRNA levels. Transcript level of superoxide dismutase (SOD) and heat shock protein (HSP) were significantly up regulated in larvae exposed to high dose mercury, while transcript level of phospholipid hydroperoxide glutathione peroxidase (PHGPx) was significantly down regulated. Moreover, exposure to high dose mercury significantly down regulated mRNA expression of carnitine palmitoyltransferase (CPT), sterol carrier protein (SCP), acyl-CoA oxidase (ACOX) and peroxisome proliferator-activated receptor alpha (PPAP alpha), but significantly up regulated mRNA expression of fatty acid elongase (FAE), fatty acid synthetase (FAS) and Acetyl CoA Carboxylase (ACC). Therefore, we conclude that high dose mercury induced thyroid function disruption, liver oxidative stress and lipid metabolism disorder by damaging thyroid and liver cell structures and altering the expression levels of relevant genes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available