4.6 Article

Mapping Advanced Argillic Alteration at Cuprite, Nevada, Using Imaging Spectroscopy

Journal

ECONOMIC GEOLOGY
Volume 109, Issue 5, Pages 1179-1221

Publisher

SOC ECONOMIC GEOLOGISTS, INC
DOI: 10.2113/econgeo.109.5.1179

Keywords

-

Funding

  1. USGS Spectral Library and Remote Sensing Projects
  2. NASA program [W15805]

Ask authors/readers for more resources

Mineral maps based on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were used to study late Miocene advanced argillic alteration at Cuprite, Nevada. Distributions of Fe-bearing minerals, clays, micas, sulfates, and carbonates were mapped using the Tetracorder spectral-shape matching system. The Al content of white micas increases toward altered areas and near intrusive rocks. Alunite composition varies from pure K to intimate mixtures of Na-K endmembers with subpixel occurrences of huangite, the Ca analogue of alunite. Intimately mixed Na-K alunite marks areas of relatively lower alteration temperature, whereas co-occurring Na-alunite and dickite may delineate relict hydrothermal conduits. The presence of dickite, halloysite, and well-ordered kaolinite, but absence of disordered kaolinite, is consistent with acidic conditions during hydrothermal alteration. Partial lichen cover on opal spectrally mimics chalcedony, limiting its detection to lichen-free areas. Pods of buddingtonite are remnants of initial quartz-adularia-smectite alteration. Thus, spectral maps provide a synoptic view of the surface mineralogy, and define a previously unrecognized early steam-heated hydrothermal event. Faulting and episodes of hydrothermal alteration at Cuprite were intimately linked to upper plate movements above the Silver Peak-Lone Mountain detachment and growth, collapse, and resurgence of the nearby Stonewall Mountain volcanic complex between 8 and 5 Ma. Isotopic dating indicates that hydrothermal activity started at least by 7.61 Ma and ended by about 6.2 Ma. Spectral and stable isotope data suggest that Cuprite is a late Miocene low-sulfidation adularia-sericite type hot spring deposit overprinted by late-stage, steam-heated advanced argillic alteration formed along the margin of the Stonewall Mountain caldera.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available