4.7 Article

Tidal pulsing alters nitrous oxide fluxes in a temperate intertidal mudflat

Journal

ECOLOGY
Volume 95, Issue 7, Pages 1960-1971

Publisher

WILEY
DOI: 10.1890/13-1333.1

Keywords

biogeochemistry; denitrification; greenhouse gas; intertidal; nitrogen; nitrous oxide; tidal flat

Categories

Funding

  1. National Science Foundation [NSF OCE 0924287, NSF OCE 0923689]
  2. Boston University
  3. NSF [NSF OCE 0423565]
  4. Directorate For Geosciences
  5. Division Of Ocean Sciences [0924287] Funding Source: National Science Foundation

Ask authors/readers for more resources

Environmental pulses, or sudden, marked changes to the conditions within an ecosystem, can be important drivers of resource availability in many systems. In this study, we investigated the effect of tidal pulsing on the fluxes of nitrous oxide (N2O), a powerful greenhouse gas, from a marine intertidal mudflat on the north shore of Massachusetts, USA. We found these tidal flat sediments to be a sink of N2O at low tide with an average uptake rate of -6.7 +/- 2 mu mol.m(-2).h(-1). Further, this N2O sink increased the longer sediments were tidally exposed. These field measurements, in conjunction with laboratory nutrient additions, revealed that this flux appears to be driven primarily by sediment denitrification. Additionally, N2O uptake was most responsive to dissolved inorganic nitrogen with phosphorus (DIN+DIP) addition, suggesting that the N2O consumption process may be P limited. Furthermore, nutrient addition experiments suggest that dissimilatory nitrate reduction to ammonium (DNRA) releases N2O at the highest levels of nitrate fertilization. Our findings indicate that tidal flats are important sinks of N2O, potentially capable of offsetting the release of this potent greenhouse gas by other, nearby ecosystems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available