4.3 Article

Architecture and growth of an annual plant Chenopodium album in different light climates

Journal

ECOLOGICAL RESEARCH
Volume 25, Issue 2, Pages 383-393

Publisher

WILEY
DOI: 10.1007/s11284-009-0666-6

Keywords

Architecture; Branching; Light use efficiency; Metamer; Nitrogen use efficiency

Categories

Funding

  1. Japan Society for the Promotion of Science [17370008, 20370015]
  2. Grants-in-Aid for Scientific Research [20370015, 17370008] Funding Source: KAKEN

Ask authors/readers for more resources

Light climates strongly influence plant architecture and mass allocation. Using the metamer concept, we quantitatively described branching architecture and growth of Chenopodium album plants grown solitarily or in a dense stand. Metamer is a unit of plant construction that is composed of an internode and the upper node with a leaf and a subtended axillary bud. The number of metamers on the main-axis stem increased with plant growth, but did not differ between solitary and dense-stand plants. Solitary plants had shorter thicker internodes with branches larger in size and number than the plant in the dense stand. Leaf area on the main stem was not different. Larger leaf area in solitary plants was due to a larger number of leaves on branches. Leaf mass per area (LMA) was higher in solitary plants. It did not significantly differ between the main axis and branches in solitary plants, whereas in the dense stand it was smaller on branches. Dry mass was allocated most to leaves in solitary plants and to stems in the dense stand in vegetative growth. Reproductive allocation was not significantly different. Branch/main stem mass ratio was higher in solitary than dense-stand plants, and leaf/stem mass ratio higher in branches than in the main axis. Nitrogen use efficiency (NUE) (dry mass growth per unit N uptake) was higher and light use efficiency (LUE) (dry mass growth per unit light interception) was lower in the plant grown solitarily than in the dense stand.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available