4.3 Article

Tree growth and competition in a post-logging Quercus mongolica forest on Mt. Sobaek, South Korea

Journal

ECOLOGICAL RESEARCH
Volume 24, Issue 2, Pages 281-290

Publisher

WILEY
DOI: 10.1007/s11284-008-0505-1

Keywords

Size-dependent growth; Quercus mongolica; Sprouting; Neighbor effects; Size inequality; Richards growth model

Categories

Funding

  1. Czech Science Foundation [GACR 206/05/0119]
  2. Korea Research Foundation Grant (MOEHRD, Basic Research Promotion Fund) [KRF-2006-312-C00419]

Ask authors/readers for more resources

Secondary woodlands in South Korea cover most mountains from low to middle elevations. While general patterns of forest succession are well understood, little is known about mechanisms of stand recovery after disturbance. We examined the spatio-temporal variations in establishment, growth, size inequality, and mode of competition among trees in a 50-year-old post-logging Quercus mongolica-dominated stand. We further compared the growth and stem allometry of single trees, presumably of seed origin, with multi-stemmed trees resprouting from stumps. Q. mongolica formed the upper canopy 16-22 m tall, 88.3% of total stand basal area, and 36.2% of total stem density, with most trees established during the first post-logging decade (51.2% were resprouts). During the first three decades, the Q. mongolica recruits grew exponentially, and disproportionately more in diameter than few older reserved trees left after the last cutting. This substantially decreased size inequality. The reverse trend was observed from 1994 to 2004: larger trees grow more, indicating an increasing asymmetry of competition for light. Neighborhood analysis revealed that when target trees had more or larger neighbors, their exponential phase of growth was reduced and maximum size was decreased. After the 50 years of stand development, more than 70% of Q. mongolica showed growth decline as a result of competitive stress, and mortality was about 30%, concentrated in smaller size classes. Compared to single stems, resprouts within clones do not seem to compete less asymmetric as might be expected based on studies of clonal herbaceous plants and physiological integration within genets. As Q. mongolica was also negatively affected by competition from woody species currently prevailing in the lower tree stratum (Tilia amurensis, Acer mono, Fraxinus rhynchophylla, Acer pseudosieboldianum), we predict the stand will become increasingly dominated by these more shade-tolerant trees.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available