4.6 Article

Homogenization Study of the Effects of Cycling on the Electronic Conductivity of Commercial Lithium-Ion Battery Cathodes

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 119, Issue 22, Pages 12199-12208

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.5b02736

Keywords

-

Funding

  1. Automotive Partnership Canada (APC)
  2. General Motors of Canada (GMC)
  3. Natural Sciences and Engineering Research Council of Canada (NSERC)
  4. McMaster University

Ask authors/readers for more resources

State-of-the-art image acquisition, image analysis, and modern homogenization theory are used to study the effects of cycling on commercial lithium-ion battery cathodes ability to conduct electronic current. This framework allows for a rigorous computation of an effective, or macroscale, electronic conductivity given an arbitrarily complicated three-dimensional microstructure comprised of three different material phases, i.e., active material, binder (polymer mixed with conductive carbon black), and electrolyte. The approach explicitly takes into account the geometry and is thus a vast improvement over the commonly used Bruggeman approximation. We apply our framework to two different types of lithium-ion battery cathodes before and after cycling. This leads us to predict an appreciable decrease in the effective electronic conductivity as a direct result of cycling. In addition, we present an ad-hoc neighbor counting methodology which meaningfully quantifies the effect of binder detaching from the surface of the active material due to the internal mechanical stresses experienced under operating conditions, thereby supporting the results of the homogenization calculations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available