4.5 Article

Forest fire, bank strength and channel instability: the 'unusual' response of Fishtrap Creek, British Columbia

Journal

EARTH SURFACE PROCESSES AND LANDFORMS
Volume 35, Issue 10, Pages 1167-1183

Publisher

WILEY
DOI: 10.1002/esp.1946

Keywords

forest fire; bank erosion; gravel bed steam; suspended sediment

Funding

  1. Natural Sciences and Engineering Research Council
  2. British Columbia Forest Sciences Program [Y071031, Y082031]
  3. British Columbia Ministry of Forests and Range

Ask authors/readers for more resources

In August 2003, the McLure forest fire burned 62% of the drainage basin of Fishtrap Creek. Streamflow has been measured there since the early 1970s, and suspended sediment concentration and channel morphology have been monitored since the fire. Although the short post-fire period (four years) limits our ability to draw firm conclusions about streamflow changes, there has been no obvious increase in peak flows since the fire. However, the total runoff during the freshet period does appear to have increased and the onset of snowmelt appears to occur about two weeks earlier than it did prior to the fire. Suspended sediment records from Fishtrap Creek and from an unburnt reference stream nearby are similar, suggesting that the burnt areas have remained relatively stable and that the sediment supply to Fishtrap Creek has not been dramatically altered. In contrast, the stream channel morphology has changed, widening by over 100% of the original width in some places and transforming from a laterally stable plane-bed morphology to a laterally active riffle-pool morphology. The timing and magnitude of the observed morphologic changes are consistent with the predicted decline in bank strength due to root decay, implying that the observed changes are associated with an internal instability associated with changes to the stream boundaries, rather than with the more typically reported externally driven instabilities caused by changes in streamflow or sediment supply. This delayed response in the absence of large changes in streamflow or sediment supply, while 'unusual' in that it has not been documented in the previous literature, may be a common mode of response, particularly in wat'ersheds with nival flow regimes. Copyright (C) 2010 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available