4.5 Article

Measuring the Differential Stoichiometry and Energetics of Ligand Binding to Macromolecules by Single-Molecule Force Spectroscopy: An Extended Theory

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 119, Issue 5, Pages 1930-1938

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp511555g

Keywords

-

Funding

  1. National Science Foundation [DMR-1006737, DMR-1309414]
  2. NSF [DGE-1144085]
  3. Direct For Mathematical & Physical Scien [1309414] Funding Source: National Science Foundation
  4. Division Of Materials Research [1309414] Funding Source: National Science Foundation

Ask authors/readers for more resources

Many chemical techniques exist for measuring the stoichiometry of ligand binding to a macromolecule; however, these techniques are often specific to certain ligands or require the presumption of specific binding models. Here, we further develop a previously reported, general, thermodynamic method for extracting the change in number of ligands bound to a macromolecule as that macromolecule undergoes a conformational transition driven by mechanical stretching, for example, by magnetic tweezers or optical trapping. We extend the theory of this method to consider systems with many ligands, experiments conducted in different thermodynamic ensembles (e.g., constant-force, constant-extension), and experiments in which the system is not at equilibrium. Further, we show that analysis of the same single-molecule mechanical manipulation data yields a measure of the differential free energy of stabilization due to ligand binding, that is, the free energy contribution by which ligand binding favors one conformation of the macromolecule over another. We interpret an existing data set measuring ion binding to RNA and DNA in terms of this free energy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available