4.6 Article

Effect of phenolic compounds on photodegradation of anthracene and benzo[a]anthracene in media of different polarity

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotochem.2015.05.004

Keywords

Photodegradation; Anthracene; Benzo[a]anthracene; Solvent polarity; Photosensitization

Ask authors/readers for more resources

The photodegradation of anthracene (Ant) and benz[a]anthracene (BaA) were studied in air-equilibrated hexane, methanol and pure water solutions in the absence and presence of phenolic compounds (4-methylcatechol, guaiacol and syringol). In the absence of phenolic compound, the pseudo first-order degradation rate constants of Ant and BaA increased with the polarity of solvent, demonstrating the influence of solvent effects on the photoreactivity. The differences can be attributed to factors such as the proton donating potential of the solvent, and the formation potentials of PAH radical cation and hydroxyl radical in solvent. In the presence of phenolic compound, Ant and BaA photodegradation rates were accelerated in hexane and methanol while inhibited in water solutions. Photodegradation kinetics of the phenolic compounds were also measured; and visible colored products were observed in all three solvents. The observed accelerations of Ant and BaA photodecay in the presence of the phenolic compounds can be explained by energy transfer from the phenolic compound to PAH, phenolic hydrogen abstraction by excited PAH and more reactive radical formation from the phenolic compound. However, the inhibition effects of Ant and BaA photodecay in water were more influenced by the quenching of photo-produced reactive oxygen species (ROS) by the phenolic compound and/or its photoproducts. The results indicate that the photodegradation of PAHs will be highly dependent on the aerosol water content. i.e., the chemical composition of the environmental aerosols. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available