4.3 Article

Constructive generation of very hard 3-colorability instances

Journal

DISCRETE APPLIED MATHEMATICS
Volume 156, Issue 2, Pages 218-229

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.dam.2006.07.015

Keywords

graph coloring; search; phase transition; NP-complete; hard problem; heuristics; constraint satisfaction

Ask authors/readers for more resources

Graph colorability (COL), is a typical constraint satisfaction problem to which phase transition phenomena (PTs), are important in the computational complexity of combinatorial search algorithms. PTs are significant and subtle because, in the PT region, extraordinarily hard problem instances are found, which may require exponential-order computational time to solve. To clarify PT mechanism, many studies have been undertaken to produce very hard instances, many of which were based on generate-and-test approaches. We propose a rather systematic or constructive algorithm that repeats the embedding of 4-critical graphs to arbitrarily generate large extraordinarily hard 3-colorability instances. We demonstrated experimentally that the computational cost to solve our generated instances is of an exponential order of the number of vertices by using a few actual coloring algorithms and constraint satisfaction algorithms. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available